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Franz Mandl
(1923–2009)

This book is dedicated to Franz Mandl. I first encountered him as an inspirational
teacher when I was an undergraduate. Later, we became colleagues and firm friends
at Manchester. Franz was the editor throughout the writing of the book and made
many valuable suggestions and comments based upon his wide-ranging knowledge
and profound understanding of physics. Discussions with him about the various
topics presented in the book were always illuminating and this interaction was one
of the joys of writing the book.
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Editors’ Preface to the
Manchester Physics Series

The Manchester Physics Series is a series of textbooks at first degree level. It grew
out of our experience at the University of Manchester, widely shared elsewhere,
that many textbooks contain much more material than can be accommodated in a
typical undergraduate course; and that this material is only rarely so arranged as
to allow the definition of a short self-contained course. In planning these books
we have had two objectives. One was to produce short books so that lecturers
would find them attractive for undergraduate courses, and so that students would
not be frightened off by their encyclopaedic size or price. To achieve this, we
have been very selective in the choice of topics, with the emphasis on the basic
physics together with some instructive, stimulating and useful applications. Our
second objective was to produce books which allow courses of different lengths
and difficulty to be selected with emphasis on different applications. To achieve
such flexibility we have encouraged authors to use flow diagrams showing the
logical connections between different chapters and to put some topics in starred
sections. These cover more advanced and alternative material which is not required
for the understanding of latter parts of each volume.

Although these books were conceived as a series, each of them is self-contained
and can be used independently of the others. Several of them are suitable for
wider use in other sciences. Each Author’s Preface gives details about the level,
prerequisites, etc., of that volume.

The Manchester Physics Series has been very successful since its inception 40
years ago, with total sales of more than a quarter of a million copies. We are
extremely grateful to the many students and colleagues, at Manchester and else-
where, for helpful criticisms and stimulating comments. Our particular thanks go
to the authors for all the work they have done, for the many new ideas they have
contributed, and for discussing patiently, and often accepting, the suggestions of
the editors.

Finally we would like to thank our publishers, John Wiley & Sons, Ltd, for their
enthusiastic and continued commitment to the Manchester Physics Series.

F. K. Loebinger
F. Mandl

D. J. Sandiford
August 2008





Author’s Preface

Vibrations and waves lie at
the heart of many branches of
the physical sciences and engi-
neering. Consequently, their
study is an essential part of
the education of students in
these disciplines. This book
is based upon an introductory
24-lecture course on vibrations
and waves given by the author
at the University of Manch-
ester. The course was attended
by first-year undergraduate stu-
dents taking physics or a joint
honours degree course with
physics. This book covers the
topics given in the course

although, in general, it amplifies to some extent the material delivered in the
lectures.

The organisation of the book serves to provide a logical progression from the
simple harmonic oscillator to waves in continuous media. The first three chapters
deal with simple harmonic oscillations in various circumstances while the last four
chapters deal with waves in their various forms. The connecting chapter (Chapter 4)
deals with coupled oscillators which provide the bridge between waves and the
simple harmonic oscillator. Chapter 1 describes simple harmonic motion in some
detail. Here the universal importance of the simple harmonic oscillator is empha-
sised and it is shown how the elegant mathematical description of simple harmonic
motion can be applied to a wide range of physical systems. Chapter 2 extends the
study of simple harmonic motion to the case where damping forces are present as
they invariably are in real physical situations. It also introduces the quality factor
Q of an oscillating system. Chapter 3 describes forced oscillations, including the
phenomenon of resonance where small forces can produce large oscillations and
possibly catastrophic effects when a system is driven at its resonance frequency.
Chapter 4 describes coupled oscillations and their representation in terms of the
normal modes of the system. As noted above, coupled oscillators pave the way to
the understanding of waves in continuous media. Chapter 5 deals with the physical
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xiv Author’s Preface

characteristics of travelling waves and their mathematical description and intro-
duces the fundamental wave equation. Chapter 6 deals with standing waves that
are seen to be the normal modes of a vibrating system. A consideration of the
general motion of a vibrating string as a superposition of normal modes leads to
an introduction of the powerful technique of Fourier analysis. Chapter 7 deals with
some of the most dramatic phenomena produced by waves, namely interference
and diffraction. Finally, Chapter 8 describes the superposition of a group of waves
to form a modulated wave or wave packet and the behaviour of this group of waves
in a dispersive medium. Throughout the book, the fundamental principles of waves
and vibrations are emphasised so that these principles can be applied to a wide
range of oscillating systems and to a variety of waves including electromagnetic
waves and sound waves. There are some topics that are not required for other parts
of the book and these are indicated in the text.

Waves and vibrations are beautifully and concisely described in terms of the
mathematical equations that are used throughout the book. However, emphasis is
always placed on the physical meaning of these equations and undue mathematical
complication and detail are avoided. An elementary knowledge of differentiation
and integration is assumed. Simple differential equations are used and indeed waves
and vibrations provide a particularly valuable way to explore the solutions of these
differential equations and their relevance to real physical situations. Vibrations and
waves are well described in complex representation. The relevant properties of
complex numbers and their use in representing physical quantities are introduced
in Chapter 3 where the power of the complex representation is also demonstrated.

Each chapter is accompanied by a set of problems that form an important part
of the book. These have been designed to deepen the understanding of the reader
and develop their skill and self-confidence in the application of the equations.
Some solutions and hints to these problems are given at the end of the book. It
is, of course, far more beneficial for the reader to try to solve the problems before
consulting the solutions.

I am particularly indebted to Dr Franz Mandl who was my editor throughout the
writing of the book. He read the manuscript with great care and physical insight
and made numerous and valuable comments and suggestions. My discussions with
him were always illuminating and rewarding and indeed interacting with him was
one of the joys of writing the book. I am very grateful to Dr Michele Siggel-King,
my wife, who produced all the figures in the book. She constructed many of the
figures depicting oscillatory and wave motion using computer simulation programs
and she turned my sketches into suitable figures for publication. I am also grateful to
Michele for proofreading the manuscript. I am grateful to Professor Fred Loebinger
who made valuable comments about the figures and to Dr Antonio Juarez Reyes
for working through some of the problems.

George C. King



1
Simple Harmonic Motion

In the physical world there are many examples of things that vibrate or oscillate, i.e.
perform periodic motion. Everyday examples are a swinging pendulum, a plucked
guitar string and a car bouncing up and down on its springs. The most basic form
of periodic motion is called simple harmonic motion (SHM). In this chapter we
develop quantitative descriptions of SHM. We obtain equations for the ways in
which the displacement, velocity and acceleration of a simple harmonic oscillator
vary with time and the ways in which the kinetic and potential energies of the
oscillator vary. To do this we discuss two particularly important examples of SHM:
a mass oscillating at the end of a spring and a swinging pendulum. We then extend
our discussion to electrical circuits and show that the equations that describe the
movement of charge in an oscillating electrical circuit are identical in form to those
that describe, for example, the motion of a mass on the end of a spring. Thus if
we understand one type of harmonic oscillator then we can readily understand
and analyse many other types. The universal importance of SHM is that to a
good approximation many real oscillating systems behave like simple harmonic
oscillators when they undergo oscillations of small amplitude. Consequently, the
elegant mathematical description of the simple harmonic oscillator that we will
develop can be applied to a wide range of physical systems.

1.1 PHYSICAL CHARACTERISTICS OF SIMPLE HARMONIC
OSCILLATORS

Observing the motion of a pendulum can tell us a great deal about the gen-
eral characteristics of SHM. We could make such a pendulum by suspending an
apple from the end of a length of string. When we draw the apple away from its
equilibrium position and release it we see that the apple swings back towards the
equilibrium position. It starts off from rest but steadily picks up speed. We notice
that it overshoots the equilibrium position and does not stop until it reaches the
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2 Simple Harmonic Motion

other extreme of its motion. It then swings back toward the equilibrium position
and eventually arrives back at its initial position. This pattern then repeats with
the apple swinging backwards and forwards periodically . Gravity is the restoring
force that attracts the apple back to its equilibrium position. It is the inertia of
the mass that causes it to overshoot. The apple has kinetic energy because of its
motion. We notice that its velocity is zero when its displacement from the equilib-
rium position is a maximum and so its kinetic energy is also zero at that point. The
apple also has potential energy. When it moves away from the equilibrium position
the apple’s vertical height increases and it gains potential energy. When the apple
passes through the equilibrium position its vertical displacement is zero and so all
of its energy must be kinetic. Thus at the point of zero displacement the velocity
has its maximum value. As the apple swings back and forth there is a continuous
exchange between its potential and kinetic energies. These characteristics of the
pendulum are common to all simple harmonic oscillators: (i) periodic motion; (ii)
an equilibrium position; (iii) a restoring force that is directed towards this equilib-
rium position; (iv) inertia causing overshoot; and (v) a continuous flow of energy
between potential and kinetic. Of course the oscillation of the apple steadily dies
away due to the effects of dissipative forces such as air resistance, but we will
delay the discussion of these effects until Chapter 2.

1.2 A MASS ON A SPRING

1.2.1 A mass on a horizontal spring

Our first example of a simple harmonic oscillator is a mass on a horizontal spring
as shown in Figure 1.1. The mass is attached to one end of the spring while the other
end is held fixed. The equilibrium position corresponds to the unstretched length
of the spring and x is the displacement of the mass from the equilibrium position
along the x-axis. We start with an idealised version of a real physical situation.
It is idealised because the mass is assumed to move on a frictionless surface and
the spring is assumed to be weightless. Furthermore because the motion is in the
horizontal direction, no effects due to gravity are involved. In physics it is quite
usual to start with a simplified version or model because real physical situations are
normally complicated and hard to handle. The simplification makes the problem
tractable so that an initial, idealised solution can be obtained. The complications,
e.g. the effects of friction on the motion of the oscillator, are then added in turn and
at each stage a modified and improved solution is obtained. This process invariably
provides a great deal of physical understanding about the real system and about
the relative importance of the added complications.

x

m

Figure 1.1 A simple harmonic oscillator consisting of a mass m on a horizontal spring.
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t

x

A

T
(one cycle)

Figure 1.2 Variation of displacement x with time t for a mass undergoing SHM.

Experience tells us that if we pull the mass so as to extend the spring and then
release it, the mass will move back and forth in a periodic way. If we plot the
displacement x of the mass with respect to time t we obtain a curve like that
shown in Figure 1.2. The amplitude of the oscillation is A, corresponding to the
maximum excursion of the mass, and we note the initial condition that x = A at
time t = 0. The time for one complete cycle of oscillation is the period T . The
frequency ν is the number of cycles of oscillation per unit time. The relationship
between period and frequency is

ν = 1

T
. (1.1)

The units of frequency are hertz (Hz), where

1 Hz ≡ 1 cycle per second ≡ 1 s−1.

For small displacements the force produced by the spring is described by Hooke’s
law which says that the strength of the force is proportional to the extension (or
compression) of the spring, i.e. F ∝ x where x is the displacement of the mass. The
constant of proportionality is the spring constant k which is defined as the force
per unit displacement. When the spring is extended, i.e. x is positive, the force acts
in the opposite direction to x to pull the mass back to the equilibrium position.
Similarly when the spring is compressed, i.e. x is negative, the force again acts
in the opposite direction to x to push the mass back to the equilibrium position.
This situation is illustrated in Figure 1.3 which shows the direction of the force at
various points of the oscillation. We can therefore write

F = −kx (1.2)

where the minus sign indicates that the force always acts in the opposite direction
to the displacement. All simple harmonic oscillators have forces that act in this
way: (i) the magnitude of the force is directly proportional to the displacement;
and (ii) the force is always directed towards the equilibrium position.
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system in 
equilibrium

system
displaced

from
equilibrium

x = 0, F = 0

x

m

m

m

F

F

x : negative

x : positive

Figure 1.3 The direction of the force acting on the mass m at various values of displace-
ment x.

The system must also obey Newton’s second law of motion which states that
the force is equal to mass m times acceleration a, i.e. F = ma. We thus obtain the
equation of motion of the mass

F = ma = −kx. (1.3)

Recalling that velocity v and acceleration a are, respectively, the first and second
derivatives of displacement with respect to time, i.e.

a = dv

dt
= d2x

dt2
, (1.4)

we can write Equation (1.3) in the form of the differential equation

m
d2x

dt2
= −kx (1.5)

or

d2x

dt2
= −ω2x (1.6)

where

ω2 = k

m
(1.7)

is a constant. Equation (1.6) is the equation of SHM and all simple harmonic
oscillators have an equation of this form. It is a linear second-order differential
equation; linear because each term is proportional to x or one of its derivatives and
second order because the highest derivative occurring in it is second order. The
reason for writing the constant as ω2 will soon become apparent but we note that
ω2 is equal to the restoring force per unit displacement per unit mass.
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1.2.2 A mass on a vertical spring

mg

unextended
spring length

spring extension 
at equilibrium∆l

x

positive
x-direction

(a) (b)

m

m

Figure 1.4 An oscillating mass on a vertical spring. (a) The mass at its equilibrium position.
(b) The mass displaced by a distance x from its equilibrium position.

If we suspend a mass from a vertical spring, as shown in Figure 1.4, we have
gravity also acting on the mass. When the mass is initially attached to the spring,
the length of the spring increases by an amount �l. Taking displacements in the
downward direction as positive, the resultant force on the mass is equal to the
gravitational force minus the force exerted upwards by the spring, i.e. the resultant
force is given by mg − k�l. The resultant force is equal to zero when the mass is
at its equilibrium position. Hence

k�l = mg.

When the mass is displaced downwards by an amount x, the resultant force is
given by

F = m
d2x

dt2
= mg − k(�l + x) = mg − k�l − kx

i.e.

m
d2x

dt2
= −kx. (1.8)

Perhaps not surprisingly, this result is identical to the equation of motion (1.5) of the
horizontal spring: we simply need to measure displacements from the equilibrium
position of the mass.

1.2.3 Displacement, velocity and acceleration in simple harmonic motion

To describe the harmonic oscillator, we need expressions for the displacement,
velocity and acceleration as functions of time: x(t), v(t) and a(t). These can be
obtained by solving Equation (1.6) using standard mathematical methods. However,
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we will use our physical intuition to deduce them from the observed behaviour of
a mass on a spring.

y

0

−1

+1

y = cos q

y = sin q

π 2π 3π 4π
q (rad)

Figure 1.5 The functions y = cos θ and y = sin θ plotted over two complete cycles.

Observing the periodic motion shown in Figure 1.2, we look for a function x(t)

that also repeats periodically. Periodic functions that are familiar to us are sin θ and
cos θ . These are reproduced in Figure 1.5 over two complete cycles. Both functions
repeat every time the angle θ changes by 2π. We can notice that the two functions
are identical except for a shift of π/2 along the θ axis. We also note the initial
condition that the displacement x of the mass equals A at t = 0. Comparison of the
actual motion with the mathematical functions in Figure 1.5 suggests the choice of
a cosine function for x(t). We write it as

x = A cos

(
2πt

T

)
(1.9)

which has the correct form in that (2πt/T ) is an angle (in radians) that goes from
0 to 2π as t goes from 0 to T , and so repeats with the correct period. Moreover
x equals A at t = 0 which matches the initial condition. We also require that
x = A cos (2πt/T ) is a solution to our differential equation (1.6). We define

ω = 2π

T
(1.10)

where ω is the angular frequency of the oscillator, with units of rad s−1, to obtain

x = A cos ωt. (1.11)

Then

dx

dt
= v = −ωA sin ωt, (1.12)

and

d2x

dt2
= a = −ω2A cos ωt = −ω2x. (1.13)
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So, the function x = A cos ωt is a solution of Equation (1.6) and correctly describes
the physical situation. The reason for writing the constant as ω2 in Equation (1.6)
is now apparent: the constant is equal to the square of the angular frequency of
oscillation. We have also obtained expressions for the velocity v and acceleration
a of the mass as functions of time. All three functions are plotted in Figure 1.6.
Since they relate to different physical quantities, namely displacement, velocity and
acceleration, they are plotted on separate sets of axes, although the time axes are
aligned with respect to each other.

t

v

x

a

t

t

turning points

(a)

(b)

(c)

x = A cos wt

v = −Aw sin wt

a = −Aw2 cos wt

Figure 1.6 (a) The displacement x, (b) the velocity v and (c) the acceleration a of a mass
undergoing SHM as a function of time t . The time axes of the three graphs are aligned.

Figure 1.6 shows that the behaviour of the three functions (1.11)–(1.13) agree
with our observations. For example, when the displacement of the mass is great-
est, which occurs at the turning points of the motion (x = ±A), the velocity is
zero. However, the velocity is at a maximum when the mass passes through its
equilibrium position, i.e. x = 0. Looked at in a different way, we can see that
the maximum in the velocity curve occurs before the maximum in the displace-
ment curve by one quarter of a period which corresponds to an angle of π/2.
We can understand at which points the maxima and minima of the acceleration
occur by recalling that acceleration is directly proportional to the force. The force
is maximum at the turning points of the motion but is of opposite sign to the
displacement. The acceleration does indeed follow this same pattern, as is readily
seen in Figure 1.6.

1.2.4 General solutions for simple harmonic motion and the phase angle φ

In the example above, we had the particular situation where the mass was released
from rest with an initial displacement A, i.e. x equals A at t = 0. For the more
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t

x

A

0

A cos wt A cos (wt + f)

f/w

Figure 1.7 General solution for displacement x in SHM showing the phase angle φ, where
x = A cos(ωt + φ).

general case, the motion of the oscillator will give rise to a displacement curve
like that shown by the solid curve in Figure 1.7, where the displacement and
velocity of the mass have arbitrary values at t = 0. This solid curve looks like the
cosine function x = A cos ωt , that is shown by the dotted curve, but it is displaced
horizontally to the left of it by a time interval φ/ω = φT/2π. The solid curve is
described by

x = A cos(ωt + φ) (1.14)

where again A is the amplitude of the oscillation and φ is called the phase angle
which has units of radians. [Note that changing ωt to (ωt − φ) would shift the curve
to the right in Figure 1.7.] Equation (1.14) is also a solution of the equation of
motion of the mass, Equation (1.6), as the reader can readily verify. In fact Equation
(1.14) is the general solution of Equation (1.6). We can state here a property of
second-order differential equations that they always contain two arbitrary constants.
In this case A and φ are the two constants which are determined from the initial
conditions, i.e. from the position and velocity of the mass at time t = 0.

We can cast the general solution, Equation (1.14), in the alternative form

x = a cos ωt + b sin ωt, (1.15)

where a and b are now the two constants. Equations (1.14) and (1.15) are entirely
equivalent as we can show in the following way. Since

A cos(ωt + φ) = A cos ωt cos φ − A sin ωt sin φ (1.16)

and cos φ and sin φ have constant values, we can rewrite the right-hand side of this
equation as

a cos ωt + b sin ωt,

where
a = A cos φ and b = −A sin φ. (1.17)

We see that if we add sine and cosine curves of the same angular frequency ω,
we obtain another cosine (or corresponding sine curve) of angular frequency ω.
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This is illustrated in Figure 1.8 where we plot A cos ωt and A sin ωt , and also
(A cos ωt + A sin ωt) which is equal to

√
2A cos(ωt − π/4). As the motion of a

simple harmonic oscillator is described by sines and cosines it is called harmonic
and because there is only a single frequency involved, it is called simple harmonic.

t

A

t

x

x

A cos wt

A sin wt

√2 A

π
4

A cos wt + A sin wt
= √2A cos (wt –   )π

4

Figure 1.8 The addition of sine and cosine curves with the same angular frequency ω. The
resultant curve also has angular frequency ω.

There is an important difference between the constants A and φ in the gen-
eral solution for SHM given in Equation (1.14) and the angular frequency ω.
The constants are determined by the initial conditions of the motion. However,
the angular frequency of oscillation ω is determined only by the properties of
the oscillator: the oscillator has a natural frequency of oscillation that is inde-
pendent of the way in which we start the motion. This is reflected in the fact
that the SHM equation, Equation (1.6), already contains ω which therefore has
nothing to do with any particular solutions of the equation. This has important
practical applications. It means, for example, that the period of a pendulum clock
is independent of the amplitude of the pendulum so that it keeps time to a high
degree of accuracy.1 It means that the pitch of a note from a piano does not
depend on how hard you strike the keys. For the example of the mass on a
spring, ω = √

k/m. This expression tells us that the angular frequency becomes
lower as the mass increases and becomes higher as the spring constant increases.

Worked example

In the example of a mass on a horizontal spring (cf. Figure 1.1) m has a value
of 0.80 kg and the spring constant k is 180 N m−1. At time t = 0 the mass
is observed to be 0.04 m further from the wall than the equilibrium position
and is moving away from the wall with a velocity of 0.50 m s−1. Obtain an

1 This assumes that the pendulum is operating as an ideal harmonic oscillator which is a good approx-
imation for oscillations of small amplitude.
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expression for the displacement of the mass in the form x = A (cos ωt + φ),
obtaining numerical values for A, ω and φ.

Solution
The angular frequency ω depends only on the oscillator parameters k and m,
and not on the initial conditions. Substituting their values gives

ω =
√

k/m = 15.0 rad s−1

To find the amplitude A: From x = A cos(ωt + φ) we obtain

v = −Aω sin(ωt + φ).

Substituting the initial values (i.e. at time t = 0), of x and v into these equations
gives

0.04 = A cos φ, 0.50 = −15A sin φ.

From cos2 φ + sin2 φ = 1, we obtain A = 0.052 m.
To find the phase angle φ: Substituting the value for A leads to two equations
for φ:

cos φ = 0.04/0.052, giving φ = 39.8◦ or 320◦,

sin φ = −0.50/(15 × 0.052), giving φ = −39.8◦ or 320◦.

Since φ must satisfy both equations, it must have the value φ = 320◦.
The angular frequency ω is given in rad s−1. To convert φ to radians:

φ = (π/180) × 320 rad = 5.59 rad. Hence, x = 0.052 cos(15t + 5.59) m.

1.2.5 The energy of a simple harmonic oscillator

Consideration of the energy of a system is a powerful tool in solving physical
problems. For one thing, scalar rather than vector quantities are involved which
usually simplifies the analysis. For the example of a mass on a spring, (Figure 1.1),
the mass has kinetic energy K and potential energy U . The kinetic energy is due
to the motion and is given by K = 1

2mv2. The potential energy U is the energy
stored in the spring and is equal to the work done in extending or compressing it,
i.e. ‘force times distance’. The work done on the spring, extending it from x ′ to
x ′ + dx ′, is kx ′dx ′. Hence the work done extending it from its unstretched length
by an amount x, i.e. its potential energy when extended by this amount, is

U =
∫ x

0
kx ′dx ′ = 1

2
kx2. (1.18)

Similarly, when the spring is compressed by an amount x the stored energy is again
equal to 1

2kx2.
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Conservation of energy for the harmonic oscillator follows from Newton’s second
law, Equation (1.5). In terms of the velocity v, this becomes

m
dv

dt
= −kx.

Multiplying this equation by dx = vdt gives

mvdv = −kxdx

and since d(x2) = 2xdx and d(v2) = 2vdv, we obtain

d

(
1

2
mv2

)
= −d

(
1

2
kx2

)
.

Integrating this equation gives

1

2
mv2 + 1

2
kx2 = constant,

where the right-hand term is a constant of integration. The two terms on the
left-hand side of this equation are just the kinetic energy K and the potential
energy U of the oscillator. It follows that the constant on the right-hand side is the
total energy E of the oscillator, i.e. we have derived conservation of energy for
this case:

E = K + U = 1

2
mv2 + 1

2
kx2 (1.19)

Equation (1.19) enables us to calculate the energy E of the harmonic oscillator for
any solution of the oscillator. If we take the general solution x = A cos(ωt + φ),
we obtain the velocity

v = dx

dt
= −ωA sin(ωt + φ) (1.20)

and the potential and kinetic energies

U = 1

2
kx2 = 1

2
kA2 cos2(ωt + φ) (1.21)

K = 1

2
mv2 = 1

2
mω2A2 sin2(ωt + φ) = 1

2
kA2 sin2(ωt + φ) (1.22)

where we substituted ω2 = k/m. Hence the total energy E is given by

E = K + U = 1

2
kA2[sin2(ωt + φ) + cos2(ωt + φ)]

= 1

2
kA2. (1.23)
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Equation (1.23) shows that the energy of a harmonic oscillator is proportional
to the square of the amplitude of the oscillation: the more we initially extend
the spring the more potential energy we store in it. The first line of Equation
(1.23) also shows that the energy of the system flows between kinetic and
potential energies although the total energy remains constant. This is illustrated
in Figure 1.9, which shows the variation of the potential and kinetic energies
with time. We have taken φ = 0 in this figure. We can also plot the kinetic
and potential energies as functions of the displacement x. The potential energy
U = 1

2kx2 is a parabola in x as shown in Figure 1.10. We do not need to work
out the equivalent expression for the variation in kinetic energy since this must be
equal to (E − 1

2kx2) and is also shown in the figure.

t

E
ne

rg
y

0

E = K + U = constant

K = mv21
2

U = kx21
2

Figure 1.9 The variations of kinetic energy K and potential energy U with time t for a
simple harmonic oscillator. The total energy of the oscillator E is the sum of the kinetic
and potential energies and remains constant with time.

x

E
ne

rg
y

U = kx2

E = constant

(E –    kx2)

1
2

1
2

−A +A

Figure 1.10 The variation of kinetic energy K and potential energy U with displacement
x for a simple harmonic oscillator.

1.2.6 The physics of small vibrations

A mass on a spring is an example of a system in stable equilibrium. When the
mass moves away from its equilibrium position the restoring force pulls or pushes
it back. We found that the potential energy of a mass on a spring is proportional
to x2 so that the potential energy curve has the shape of a parabola given by
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U(x) = 1
2kx2 (cf. Figure 1.10). This curve has a minimum when x = 0, which

corresponds to the unstretched length of the spring. The movement of the mass is
constrained by the spring and the mass is said to be confined in a potential well.
The parabolic shape of this potential well gives rise to SHM. Any system that is in
stable equilibrium will oscillate if it is displaced from its equilibrium state. We may
think of a marble in a round-bottomed bowl. When the marble is pushed to one
side it rolls back and forth in the bowl. The universal importance of the harmonic
oscillator is that nearly all the potential wells we encounter in physical situations
have a shape that is parabolic when we are sufficiently close to the equilibrium
position. Thus, most oscillating systems will oscillate with SHM when the amplitude
of oscillation is small as we shall prove in a moment. This situation is illustrated in
Figure 1.11, which shows as a solid line the potential energy of a simple pendulum
as a function of the angular displacement θ . (We will discuss the example of the
simple pendulum in detail in Section 1.3.) Superimposed on it as a dotted line is
a parabolic-shaped potential well, i.e. proportional to θ2. Close to the equilibrium
position (θ = 0), the two curves lie on top of each other. So long as the amplitude
of oscillation falls within the range where the two curves coincide the pendulum
will execute SHM.

U (q) ∝ q2

potential energy curve 
of a simple pendulum

U

q

Figure 1.11 The solid curve represents the potential energy U of a simple pendulum as a
function of its angular displacement θ . The dotted line represents the potential energy U(θ)

of a simple harmonic oscillator for which the potential energy is proportional to θ2. For
small angular amplitudes, where the two curves overlap, a simple pendulum behaves as a
simple harmonic oscillator.

We can see the above result mathematically using Taylor’s theorem which says
that any function f (x) which is continuous and possesses derivatives of all orders
at x = a can be expanded in a power series in (x − a) in the neighbourhood of the
point x = a, i.e.

f (x) = f (a) + (x − a)

1!

(
df

dx

)
x=a

+ (x − a)2

2!

(
d2f

dx2

)
x=a

+ · · · (1.24)

where the derivatives df/dx, etc., are evaluated at x = a. (In practice all the poten-
tial wells that we encounter in physical situations can be described by functions
that can be expanded in this way.) We see that Taylor’s theorem gives the value
of a function f (x) in terms of the value of the function at x = a and the values of
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the first and higher derivatives of x evaluated at x = a. If we expand f (x) about
x = 0, we have

f (x) = f (0) + x

(
df

dx

)
x=0

+ x2

2

(
d2f

dx2

)
x=0

+ · · ·

In the case of a general potential well U(x), we expand about the equilibrium
position x = 0 to obtain

U(x) = U(0) + x

(
dU

dx

)
x=0

+ x2

2

(
d2U

dx2

)
x=0

+ · · · (1.25)

The first term U(0) is a constant and has no physical significance in the sense
that we can measure potential energy with respect to any position and indeed we
can choose it to be equal to zero. The first derivative of U with respect to x is
zero because the curve is a minimum at x = 0. The second derivative of U with
respect to x, evaluated at x = 0, will be a constant. Thus if we retain only the first
non-zero term in the expansion, which is a good approximation so long as x is
small, we have

U(x) = x2

2

(
d2U

dx2

)
x=0

(1.26)

This is indeed the form of the potential energy for the mass on a spring with
d2U/dx2 playing the role of the spring constant. Then the force close to the equi-
librium position takes the general form

F = −dU

dx
= −x

(
d2U

dx2

)
x=0

(1.27)

The force is directly proportional to x and acts in the opposite direction which is
our familiar result for the simple harmonic oscillator.

The fact that a vibrating system will behave like a simple harmonic oscillator
when its amplitude of vibration is small means that our physical world is filled with
examples of SHM. To illustrate this diversity Table 1.1 gives examples of a variety
of physical systems that can oscillate and their associated periods of oscillation.
These examples occur in both classical and quantum mechanics. Clearly the more
massive the system, the greater is the period of oscillation. For the case of a
vibrating tuning fork, we can tell that the ends of the fork are oscillating at a single
frequency because we hear a pure note that we can use to tune musical instruments.
A plucked guitar string will also oscillate and indeed musical instruments provide a
wealth of examples of SHM. These oscillations, however, will in general be more
complicated than that of the tuning fork but even here these complex oscillations
are a superposition of SHMs as we shall see in Chapter 6. The balance wheel of a
mechanical clock, the sloshing of water in a lake and the swaying of a sky scraper
in the wind provide further examples of classical oscillators.



A Mass on a Spring 15

TABLE 1.1 Examples of systems that can oscillate
and the associated periods of oscillation.

System Period (s)

Sloshing of water in a lake ∼102 − 104

Large bridges and buildings ∼1 − 10
A clock pendulum or balance wheel ∼1
String instruments ∼10−3 − 10−2

Piezoelectric crystals ∼10−6

Molecular vibrations ∼10−15

A good example of SHM in the microscopic world is provided by the vibrations
of the atoms in a crystal. The forces between the atoms result in the regular lattice
structure of the crystal. Furthermore, when an atom is slightly displaced from its
equilibrium position it is subject to a net restoring force. The shape of the resultant
potential well approximates to a parabola for small amplitudes of vibration. Thus
when the atoms vibrate they do so with SHM. Einstein used a simple harmonic
oscillator model of a crystal to explain the observed variation of heat capacity with
temperature (see also Mandl,2 Section 6.2). He assumed that the atoms were har-
monic oscillators that vibrate independently of each other but with the same angular
frequency and he used a quantum mechanical description of these oscillators. As
we have seen, in classical mechanics the energy of an oscillator is proportional
to the square of the amplitude and can take any value, i.e. the energy is continu-
ous. A fundamental result of quantum mechanics is that the energy of a harmonic
oscillator is quantised, i.e. only a discrete set of energies is possible. Einstein’s
quantum model predicted that the specific heat of a crystal, such as diamond, goes
to zero as the temperature of the crystal decreases, unlike the classical result that
the specific heat is independent of temperature. Experiment shows that the specific
heat of diamond does indeed go to zero at low temperatures.

Another example of SHM in quantum physics is provided by the vibrations of
the two nuclei of a hydrogen molecule. The solid curve in Figure 1.12 represents
the potential energy U of the hydrogen molecule as a function of the separation r

between the nuclei, where we have taken the potential energy to be zero at infinite
separation. This potential energy is due to the Coulomb interaction of the electrons
and nuclei and the quantum behaviour of the electrons. The curve exhibits a min-
imum at ro = 0.74 × 10−10 m. At small separation (r → 0) the potential energy
tends to infinity, representing the strong repulsion between the nuclei. The nuclei
perform oscillations about the equilibrium separation. The dotted line in Figure 1.12
shows the parabolic form of the potential energy of a harmonic oscillator, centred
at the equilibrium seperation ro. For small amplitudes of oscillation (i.e. when the
nuclei are not too highly excited) the vibrations occur within the range where the
two curves coincide. Again, according to quantum mechanics, only a discrete set
of vibrational energies is possible. For a simple harmonic oscillator with angular
frequency ω the only allowed values of the energy are 1

2 �ω, 3
2�ω, 5

2�ω, . . . , where

2 Statistical Physics, F. Mandl, Second Edition, 1988, John Wiley & Sons, Ltd.
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r

r

U(r) = k (r – ro)2

equilibrium
separation, ro

U

Figure 1.12 The solid curve represents the variation of potential energy of a hydrogen
molecule as a function of the separation of the two hydrogen nuclei. The dotted curve
represents the potential energy of a simple harmonic oscillator centred on the equilibrium
separation ro of the two nuclei.

� is Planck’s constant divided by 2π. The observed vibrational line spectra of
molecules correspond to transitions between these energy levels with the emission
of electromagnetic radiation that typically lies in the infrared part of the electro-
magnetic spectrum. These spectra provide valuable information about the properties
of the molecule such as the strength of the molecular bond.

Worked example

The H2 molecule has a vibrational frequency ν of 1.32 × 1014 Hz. Calculate
the strength of the molecular bond, i.e. the ‘spring constant’, assuming that the
molecule can be modelled as a simple harmonic oscillator.

Solution
In previous cases, we considered a mass vibrating at one end of a spring
while the other end of the spring was connected to a rigid wall. Now we
have two nuclei vibrating against each other, which we model as two equal
masses connected by a spring. We can solve this new situation by realising
that there is no translation of the molecule during the vibration, i.e. the centre
of mass of the molecule does not move. Thus as one hydrogen nucleus moves
in one direction by a distance x the other must move in the opposite direction
by the same amount and of course both vibrate at the same frequency. The
total extension is 2x and the tension in the ‘spring’ is equal to 2kx where k

represents the ‘spring constant’ or bond strength. The equation of motion of
each nucleus of mass m is then given by

m
d2x

dt2
= −2kx

or
m

2

d2x

dt2
= −kx. (1.28)
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This equation is analogous to Equation (1.5) where m has been replaced by m/2
which is called the reduced mass of the system. The classical angular frequency
of vibration ω of the molecule is then equal to

√
2k/m. The frequency of

vibration ν = 1/T = ω/2π and m = 1.67 × 10−27 kg. Therefore

k = 4π2ν2 m

2
= 4π2(1.32 × 1014)21.67 × 10−27

2
= 574 N m−1.

1.3 THE PENDULUM

1.3.1 The simple pendulum

Timing the oscillations of a pendulum has been used for centuries to measure
time accurately. The simple pendulum is the idealised form that consists of a point
mass m suspended from a massless rigid rod of length l, as illustrated in Figure 1.13.
For an angular displacement θ , the displacement of the mass along the arc of the
circle of length l is lθ . Hence the angular velocity along the arc is ldθ/dt and the
angular acceleration is ld2θ/dt2. At a displacement θ there is a tangential force on
the mass acting along the arc that is equal to −mg sin θ , where as usual the minus
sign indicates that it is a restoring force. Hence by Newton’s second law we obtain

d2θ

dt2
= −g

l
sin θ. (1.29)

m

l

mg

mg sin q

θ

Figure 1.13 The simple pendulum of mass m and length l.

This equation does not have the same form as the equation of SHM, Equation (1.6),
as we have sin θ on the right-hand side instead of θ . However we can expand sin θ
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in a power series in θ :

sin θ = θ − θ3

3!
+ θ5

5!
+ · · · . (1.30)

y

0 0.4 0.8 1.2 1.6 2.0
q (rad)

y = q y = sin q

Figure 1.14 A comparison of the functions y = θ and y = sin θ plotted against θ .

For small angular deflections the second and higher terms are much smaller than
the first term. For example, if θ is equal to 0.1 rad (5.7◦), which is typical for
a pendulum clock, then the second term is only 0.17% of the first term and the
higher terms are much smaller still. We can see this directly by plotting the functions
y = sin θ and y = θ on the same set of axes, as shown in Figure 1.14. The two
curves are indistinguishable for values of θ below about 1

4 rad (∼15◦). Thus for
small values of θ , we need retain only the first term in the expansion (1.30) and
replace sin θ with θ (in radians) to give

d2θ

dt2
= −g

l
θ. (1.31)

This is the equation of SHM with ω = √
g/l and T = 2π

√
l/g, and we can imme-

diately write down an expression for the angular displacement θ of the pendulum:

θ = θ0 cos(ωt + φ) (1.32)

where θ0 is the angular amplitude of oscillation. The period is independent of
amplitude for oscillations of small amplitude and this is why the pendulum is
so useful as an accurate time keeper. The period does, however, depend on the
acceleration due to gravity and so measuring the period of a pendulum provides a
way of determining the value of g. (In practice real pendulums do not have their
mass concentrated at a point as in the simple pendulum as will be described in
Section 1.3.3. So for an accurate determination of g a more sophisticated pendulum
has been developed called the compound pendulum .) We finally note that for l =
1.00 m and for a value of g = 9.87 m s−2, the period of a simple pendulum is
equal to 2π

√
1.00/9.87 = 2.00 s and indeed the second was originally defined as

equal to one half the period of a 1 m simple pendulum.
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1.3.2 The energy of a simple pendulum

We can also analyse the motion of the simple pendulum by considering its
kinetic and potential energies. The geometry of the simple pendulum is shown in
Figure 1.15. (The horizontal distance x = l sin θ is not exactly the same as the
distance along the arc, which is equal to lθ . However, since sin θ � θ for small θ ,
the difference is negligible.) From the geometry we have

l2 = (l − y)2 + x2 (1.33)

which gives

2ly = y2 + x2. (1.34)

l
q

x

y

l–y

Figure 1.15 The geometry of the simple pendulum.

For small displacements of the pendulum, i.e. x 	 l, it follows that y 	 x, so that
the term y2 can be neglected and we can write,

y = x2

2l
. (1.35)

As the mass is displaced from its equilibrium position its vertical height increases
and it gains potential energy. This gain in potential energy is equal to mgy =
mgx2/2l. The total energy of the system E is given by the sum of the kinetic and
potential energies:

E = K + U = 1

2
mv2 + 1

2

mgx2

l
. (1.36)

At the turning point of the motion, when x equals A, the velocity v is zero giving

E = 1

2

mgA2

l
. (1.37)

From conservation of energy, it follows that

mgA2

l
= mv2 + mgx2

l
(1.38)
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is true for all times. We can use Equation (1.38) to obtain expressions for velocity
v and displacement x:

v = dx

dt
=

√
g(A2 − x2)

l
. (1.39)

This expression describes how the velocity changes with the displacement x in
SHM in contrast to Equation (1.12) which describes how the velocity changes with
time t . Since v = dx/dt we have

∫
dx√

A2 − x2
=

√
g

l

∫
dt . (1.40)

The integral on the left-hand side can be evaluated using the substitution x =
A sin θ , giving

sin−1
( x

A

)
=

√
g

l
t + φ, (1.41)

where φ is the constant of integration, and

x = A sin

(√
g

l
t + φ

)
. (1.42)

Equation (1.42) describes SHM with ω = √
g/l and T = 2π

√
l/g as before.

At this point we note the similarity in the expressions for the total energy of the
two examples of SHM that we have considered.

For the mass on a spring: E = 1

2
mv2 + 1

2
kx2. (1.43a)

For the simple pendulum: E = 1

2
mv2 + 1

2

mg

l
x2. (1.43b)

Both expressions have the form: E = 1

2
αv2 + 1

2
βx2, (1.43c)

where α and β are constants. It is a universal characteristic of simple harmonic
oscillators that their total energy can be written as the sum of two parts, one
involving the (velocity)2 and the other the (displacement)2. Just as md2x/dt2 =
−kx, Equation (1.5), is the signature of SHM in terms of forces, Equation (1.43) is
the signature of SHM in terms of energies. If we obtain either of these equations in
the analysis of a system then we know we have SHM. We stress that the equations
are the same for all simple harmonic oscillators: only the labels for the physical
quantities change. We do not need to repeat the analysis again: we can simply
take over the results already obtained. The constant α corresponds to the inertia of
the system through which it can store kinetic energy. The constant β corresponds
to the restoring force per unit displacement through which the system can store



The Pendulum 21

potential energy. When we differentiate the conservation of energy equation for
SHM, Equation (1.43c), with respect to time we obtain

dE

dt
= αv

dv

dt
+ βx

dx

dt
= 0

giving
d2x

dt2
= −β

α
x.

Comparing this with Equation (1.6), it follows that the angular frequency of oscil-
lation ω is equal to

√
β/α.

Worked example

A marble of radius r rolls back and forth without slipping in a spherical dish of
radius R. Use energy considerations to show that the motion is simple harmonic
for small displacements of the marble from its equilibrium position and deduce
an expression for the period of the oscillations. The moment of inertia I of a
solid sphere of mass m about an axis through its centre is equal to 2

5mr2.

Solution
The equilibrium and displaced positions of the marble are shown in Figure 1.16,
where the arrows indicate the rotation of the marble when it rotates through
an angle φ. If the marble were rotating through an angle φ on a flat surface
it would roll a distance rφ. However on a spherical surface as in Figure 1.16,
it rolls a distance l along the arc of radius R given by l = r(φ + θ). Since
l = Rθ ,

φ = (R − r)

r
θ and

dφ

dt
= (R − r)

r

(
dθ

dt

)
.

r

R

l

f q

q

Figure 1.16 A marble of radius r that rolls back and forth without slipping in a
spherical dish of radius R.

The total kinetic energy of the marble, as it moves along the surface of the
dish, is equal to the kinetic energy of the translational motion of its centre of
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mass plus the kinetic energy of its rotational motion about the centre of mass.
Hence

K = 1

2
mv2 + 1

2
I

(
dφ

dt

)2

.

The translational kinetic energy is given by

1

2
mv2 = 1

2
m(R − r)2

(
dθ

dt

)2

.

Therefore,

K = 1

2
m

(
7

5

)
(R − r)2

(
dθ

dt

)2

where we have substituted for I . The potential energy is

U = mg(R − r)(1 − cos θ) = 1

2
mg(R − r)θ2

for small θ . Thus

E = 1

2
m

(
7

5

)
(R − r)2

(
dθ

dt

)2

+ 1

2
mg(R − r)θ2.

This has the general form of the energy equation (1.43c) of a harmonic oscil-
lator

E = 1

2
α

(
dθ

dt

)2

+ 1

2
βθ2

where now θ represents the displacement coordinate. Hence

ω =
√

β

α
=

√
5g

7(R − r)
and T = 2π

√
7(R − r)

5g
.

This example would be much more difficult to solve from force considerations.

1.3.3 The physical pendulum

In a physical pendulum the mass is not concentrated at a point as in the simple
pendulum, but is distributed over the whole body. It is thus more representative
of real pendulums. An example of a physical pendulum is shown in Figure 1.17.
It consists of a uniform rod of length l that pivots about a horizontal axis at its
upper end. This is a rotating system where the pendulum rotates about its point
of suspension. For a rotating system, Newton’s second law for linear systems,
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mg

mg sinq

l

rod pivots about 
one end

centre
of

mass

q

Figure 1.17 A rod that pivots about one of its ends, which is an example of a physical
pendulum.

md2x/dt2 = F , becomes

I
d2θ

dt2
= τ (1.44)

where I is the moment of inertia of the body about its axis of rotation and τ is the
applied torque. The moment of inertia of a uniform rod of length l about an end
is equal to 1

3ml2 and its centre of mass is located at its mid point. The resultant
torque τ on the rod when it is displaced through an angle θ is given by the product
of the torque arm 1

2 l and the component of the force normal to the torque arm
(mg sin θ ), i.e.

τ =
(

1

2
l

)
× (−mg sin θ).

Hence we obtain

1

3
ml2 d2θ

dt2
= −1

2
mgl sin θ (1.45)

giving

d2θ

dt2
= −3g

2l
sin θ. (1.46)

Again we can use the small-angle approximation to obtain

d2θ

dt2
= −3g

2l
θ. (1.47)

This is SHM with ω = √
3g/2l and T = 2π

√
2l/3g.
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In a simple model we can describe the walking pace of a person in terms of a
physical pendulum. We model the human leg as a solid rod that pivots from the
hip. Furthermore, when we walk we do so at a comfortable pace that coincides
with the natural period of oscillation of the leg. If we assume a value of 0.8 m for
l, the length of the leg, then its natural period is ∼1.5 s. One complete period of
the swinging leg corresponds to two strides. Try this yourself. If the length of a
stride is, say, 1 m then we would walk at a speed of approximately 2/1.5 m s−1

which corresponds to 4.8 km h−1 or about 3 mph which is in good agreement with
reality.

1.3.4 Numerical solution of simple harmonic motion3

When solving the equation of motion for an oscillating pendulum we made use of
the small-angle approximation, sin θ � θ when θ is small. This made the equation
of motion much easier to solve. However an alternative way, without resorting to
the small-angle approximation, is to solve the equation numerically. The essential
idea is that if we know the position and velocity of the mass at time t and we know
the force acting on it then we can use this knowledge to obtain good estimates of
these parameters at time (t + δt). We then repeat this process, step by step, over
the full period of the oscillation to trace out the displacement of the mass with
time. We can make these calculations as accurate as we like by making the time
interval δt sufficiently small. To demonstrate this approach we apply it to the simple
pendulum. Figure 1.18 shows a simple pendulum and the angular position of the
mass at three instants of time each separated by δt , i.e. at t , (t + δt) and (t + 2δt).
Using the notation θ̇ (t) and θ̈ (t) for dθ(t)/dt and d2θ(t)/dt2, respectively, we can
write the equation of motion of the mass, Equation (1.29),

θ̈ (t) = −g

l
sin θ(t). (1.48)

(t+dt)

q(t)
q(t+dt)

q(t+2dt)

(t)

(t+2dt)

Figure 1.18 A simple pendulum showing the position of the mass at three instants of time
separated by time interval δt .

3 This section may be omitted as it is not required later in the book.
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If the angular position of the mass is θ(t) at time t , then its position at time (t + δt)
will be different by an amount equal to the angular velocity of the mass times the
time interval δt (cf. the familiar expression x = vt for linear motion). We might
be tempted to use θ̇ (t) for this angular velocity. However, as we know, the angular
velocity varies during the time δt . A better estimate for the angular velocity is its
average value between the times t and (t + δt), i.e. θ̇ (t + δt/2). Thus to a good
approximation we have

θ(t + δt) = θ(t) + δt × θ̇ (t + δt/2). (1.49)

In a similar way we can relate the angular velocities of the mass at times separated
by time δt , i.e. the new velocity will be different from the old value by an amount
equal to δt × θ̈ (t), where θ̈ (t) is the angular acceleration (cf. the familiar expression
v = u + at for linear motion). The acceleration also varies with time and so again
we will use its average value during the time interval δt . For the evaluation of
θ̇ (t + δt/2) this translates to

θ̇ (t + δt/2) = θ̇ (t − δt/2) + δt × θ̈ (t) (1.50)

where θ̈ (t) is the average value of the angular acceleration between the times
(t − δt/2) and (t + δt/2) which we know from Equation (1.48). For the first step
of this calculation we need the value of the angular velocity at time t = δt/2. For
this particular case we use the expression

θ̇ (δt/2) = (δt/2) × θ̈ (0). (1.51)

Armed with these expressions for angular position, velocity and acceleration we
can trace the angular displacement of the mass step by step.

We proceed by building up a table of consecutive values of θ(t), θ̇(t) and θ̈ (t).
As an example we chose the length of the simple pendulum to give T = 2.0 s and
ω = π. We also chose a time interval δt of 0.02 s (equal to one hundredth of the
period) and an angular amplitude θ0 of 0.10 rad (5.7◦). The values obtained in the
first 10 steps of the calculation are shown in Table 1.2 and were obtained using
a hand calculator. For comparison the final column of Table 1.2 shows the values
obtained from the analytic solution θ(t) = θ0 cos ωt . We see that the numerically
calculated values of the displacement are in agreement with the analytic values up to
the third significant figure. These two sets of values for a complete period of oscil-
lation are plotted in Figure 1.19 and show the familiar variation of displacement
with time. The solid curve corresponds to the values of displacement obtained from
the analytic solution θ(t) = θ0 cos ωt , while the dots (•) correspond to the numeri-
cally computed values. The agreement is so good that the dots lie exactly on top of
the analytic curve. These results demonstrate that the small-angle approximation
is valid in this case and that the numerical method gives accurate results.

This numerical method allows us to explore what happens for large-amplitude
oscillations where the small angle approximation is no longer valid. Figure 1.20
shows the results for a very large angular amplitude of 1.0 rad (57◦) which were
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TABLE 1.2 Computed values of angular displacement, velocity and acceleration of a
simple pendulum. The last column on the right shows the values obtained from the

analytic solution.

Time (s) Angular displacement, Angular acceleration, Angular velocity, θ(t) = 0.1 cos πt

θ(t) (rad) θ̈ (t) (rad s−2) θ̇ (t) (rad s−1) (rad)

0.00 0.1000 −0.985 −0.0099 0.1000
0.02 0.0998 −0.983 −0.0295 0.0998
0.04 0.0992 −0.978 −0.0491 0.0992
0.06 0.0982 −0.968 −0.0685 0.0982
0.08 0.0968 −0.954 −0.0876 0.0969
0.10 0.0950 −0.937 −0.106 0.0951
0.12 0.0929 −0.915 −0.124 0.0930
0.14 0.0904 −0.891 −0.142 0.0905
0.16 0.0876 −0.863 −0.159 0.0876

time (s)

0 0.5 1.0 1.5 2.0

0

+0.1

−0.1

q (rad)

Figure 1.19 The angular displacement θ , plotted against time, for a simple pendulum with
a small amplitude of oscillation; θ0 = 0.1 rad. The solid curve corresponds to the values
of displacement obtained from the analytic solution θ(t) = θ0 cos ωt , while the dots (•)
correspond to the numerically computed values. The agreement is so good that the computed
values lie on top of the analytical curve.

q (rad)

0 0.5 1.0 1.5

time (s)

2.0

0

+0.1

−0.1

2.5

Figure 1.20 The angular displacement θ , plotted against time, of a simple pendulum for
a large amplitude of oscillation; θ0 = 1.0 rad. The solid curve corresponds to the values of
displacement obtained from the solution θ(t) = θ0 cos ωt , while the dotted curve is obtained
from the numerically computed results. For large-amplitude oscillations the period of the
pendulum is no longer independent of amplitude and increases with amplitude.
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obtained using a spreadsheet program. The solid curve corresponds to the values
of displacement obtained from the solution θ(t) = θ0 cos ωt while the dotted curve
is the one obtained from the numerically computed values. There is a significant
difference between the two curves: the actual angular displacement of the mass,
which is given by the numerical values, no longer closely matches the analytic
solution. In particular the time period for the actual oscillations has increased to a
value of 2.13 s: an increase of 6.5%. We see that for large-amplitude oscillations the
period of the pendulum is no longer independent of amplitude and that it increases
with amplitude.

1.4 OSCILLATIONS IN ELECTRICAL CIRCUITS: SIMILARITIES
IN PHYSICS

In this section we consider oscillations in an electrical circuit. What we find is
that these oscillations are described by a differential equation that is identical in
form to Equation (1.6) and so has an identical solution: only the physical quantities
associated with the differential equation are different. This illustrates that when we
understand one physical situation we can understand many others. It also means that
we can simulate one system by another and in this way build analogue computers,
i.e. we can build an electrical circuit consisting of resistors, capacitors and inductors
that will exactly simulate the operation of a mechanical system.

1.4.1 The LC circuit

The simplest example of an oscillating electrical circuit consists of an inductor L

and capacitor C connected together in series with a switch as shown in Figure 1.21.

L

I

C
+q

–q

Figure 1.21 An electrical oscillator consisting of an inductor L and a capacitor C connected
in series.

As usual we start with an idealised situation where we assume that the resistance
in the circuit is negligible. This is analogous to the assumption for mechanical
systems that there are no frictional forces present. Initially, the switch is open and
the capacitor is charged to voltage VC . The charge q on the capacitor is given
by q = VCC where C is the capacitance. When the switch is closed the charge
begins to flow through the inductor and a current I = dq/dt flows in the circuit.
This is a time-varying current and produces a voltage across the inductor given
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by VL = LdI/dt . We can analyse the LC circuit using Kirchhoff’s law , which
states that ‘the sum of the voltages around the circuit is zero’, i.e. VC + VL = 0.
Therefore

q

C
+ L

dI

dt
= 0 (1.52)

giving

q

C
+ L

d2q

dt2
= 0 (1.53)

and

d2q

dt2
= − 1

LC
q. (1.54)

This equation describes how the charge on a plate of the capacitor varies with time.
It is of the same form as Equation (1.6) and represents SHM. The frequency of the
oscillation is given directly by, ω = √

1/LC. Since we have the initial condition
that the charge on the capacitor has its maximum value at t = 0, then the solution
to Equation (1.54) is q = q0 cos ωt , where q0 is the initial charge on the capacitor.
The variation of charge q with respect to t is shown in Figure 1.22 and is analogous
to the way the displacement of a mass on a spring varies with time.

t0

q

Figure 1.22 The variation of charge q with time on the capacitor in a series LC circuit.
The charge oscillates in time in an analogous way to the displacement of a mass oscillating
at the end of a spring.

We can also consider the energy of this electrical oscillator. The energy stored
in a capacitor charged to voltage VC is equal to 1

2CV 2
C . This is electrostatic energy.

The energy stored in an inductor is equal to 1
2LI 2 and this is magnetic energy.

Thus the total energy in the circuit is given by

E = 1

2
LI 2 + 1

2
CV 2

C (1.55)

or

E = 1

2
LI 2 + 1

2

q2

C
. (1.56)
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For these electrical oscillations the charge flows between the plates of the capac-
itor and through the inductor, so that there is a continuous exchange between
electrostatic and magnetic energy.

1.4.2 Similarities in physics

We note the similarities between the equations for the mechanical and electrical
cases

m
d2x

dt2
= −kx, L

d2q

dt2
= − 1

C
q (1.57a)

and

E = 1

2
m

(
dx

dt

)2

+ 1

2
kx2, E = 1

2
L

(
dq

dt

)2

+ 1

2

q2

C
, (1.57b)

where we have written dx/dt for the velocity v and dq/dt for the current I , in
order to bring out more sharply the similarity of the two cases. In both cases we
have the identical forms

α
d2Z

dt2
= −βZ, E = 1

2
α

(
dZ

dt

)2

+ 1

2
βZ2, (1.58)

where α and β are constants and Z = Z(t) is the oscillating quantity (see also
Equations 1.43). In the mechanical case Z stands for the displacement x, and in
the electrical case for the charge q. Thus all we have learned about mechanical
oscillators can be carried over to electrical oscillators. Moreover we can see a direct
correspondence between the two sets of physical quantities involved:

• q takes the place of x;
• L takes the place of m;
• 1/C takes the place of k.

For example, the inductance L is the electrical analogue of mechanical inertia m.
These analogies enable us to build an electrical circuit that exactly mimics the
operation of a mechanical system. This is useful because in the development of a
mechanical system it is much easier to change, for example, the value of a capacitor
in the analogue circuit than to manufacture a new mechanical component.

PROBLEMS 1

1.1 A mass of 0.50 kg hangs from a light spring and executes SHM so that its position x
is given by x = A cos ωt . It is found that the mass completes 20 cycles of oscillation
in 80 s. (a) Determine (i) the period of the oscillations, (ii) the angular frequency of
the oscillations and (iii) the spring constant k. (b) Using a value of A = 2 mm, make
sketches of the variations with time t of the displacement, velocity and acceleration of
the mass.
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1.2 The ends of a tuning fork oscillate at a frequency of 440 Hz with an amplitude of
0.50 mm. Determine (a) the maximum velocity and (b) the maximum acceleration of
the ends.

1.3 A platform oscillates in the vertical direction with SHM. Its amplitude of oscillation
is 0.20 m. What is the maximum frequency (Hz) of oscillation for a mass placed on
the platform to remain in contact with the platform? (Assume g = 9.81 m s−2.)

1.4 A mass executes SHM at the end of a light spring. (a) What fraction of the total
energy of the system is potential and what fraction is kinetic at the instant when the
displacement of the mass is equal to half the amplitude? (b) If the maximum amplitude
of the oscillations is doubled, what will be the change in (i) the total energy of the
system, (ii) the maximum velocity of the mass and (iii) the maximum acceleration of
the mass. Will the period of oscillation change?

1.5 A mass of 0.75 kg is attached to one end of a horizontal spring of spring constant
400 N m−1. The other end of the spring is attached to a rigid wall. The mass is pushed
so that at time t = 0 it is 4.0 cm closer to the wall than the equilibrium position and
is travelling towards the wall with a velocity of 0.50 m s−1. (a) Determine the total
energy of the oscillating system. (b) Obtain an expression for the displacement of the
mass in the form x = A cos(ωt + φ) m, giving numerical values for A, ω and φ.

1.6

m m

m

k

kkkk

(c)(b)(a)

m

The figure shows three systems of a mass m suspended by light springs that all have the
same spring constant k. Show that the frequencies of oscillation for the three systems
are in the ratio ωa : ωb : ωc = √

2 : 1 :
√

1/2.

1.7 A test tube is weighted by some lead shot and floats upright in a liquid of density
ρ. When slightly displaced from its equilibrium position and released, the test tube
oscillates with SHM. (a) Show that the angular frequency of the oscillations is equal
to

√
Aρg/m where g is the acceleration due to gravity, A is the cross-sectional area

of the test tube and m is its mass. (b) Show that the potential energy of the system
is equal to 1

2 Aρgx2 where x is the displacement from equilibrium. Hence give an
expression for the total energy of the oscillating system in terms of the instantaneous
displacement and velocity of the test tube.

1.8 We might assume that the period of a simple pendulum depends on the mass m, the
length l of the string and g the acceleration due to gravity, i.e. T ∝ mαlβgγ , where α,
β and γ are constants. Consider the dimensions of the quantities involved to deduce
the values of α, β and γ and hence show T ∝ √

l/g.

1.9 A simple pendulum has a length of 0.75 m. The pendulum mass is displaced hor-
izontally from its equilibrium position by a distance of 5.0 mm and then released.
Calculate (a) the maximum speed of the mass and (b) the time it takes to reach this
speed. (Assume g = 9.81 m s−2.)
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1.10

k

q

The figure shows a thin uniform rod of mass M and length 2L that is pivoted without
friction about an axis through its mid point. A horizontal light spring of spring constant
k is attached to the lower end of the rod. The spring is at its equilibrium length when the
angle θ with respect to the vertical is zero. Show that for oscillations of small amplitude,
the rod will undergo SHM with a period of 2π

√
M/3k. The moment of inertia of the

rod about its mid point is ML2/3. (Assume the small angle approximations: sin θ � θ
and cos θ � 1.)

1.11 The potential energy U(x) between two atoms in a diatomic molecule can be expressed
approximately by

U(x) = − a

x6
+ b

x12

where x is the separation of the atoms and a and b are constants. (a) Obtain an
expression for the force between the two atoms and hence show that the equilibrium
separation xo of the atoms is equal to (2b/a)1/6. (b) Show that the system will oscillate
with SHM when slightly displaced from equilibrium with a frequency equal to

√
k/m,

where m is the reduced mass and k = 36a(a/2b)4/3.

1.12 A mass M oscillates at the end of a spring that has spring constant k and finite mass
m. (a) Show that the total energy E of the system for oscillations of small amplitude
is given by

E = 1

2
(M + m/3)v2 + 1

2
kx2

where v and x are the velocity and displacement of the mass M , respectively. (Hint:
To find the kinetic energy of the spring, consider it to be divided into infinitesimal
elements of length dl and find the total kinetic energy of these elements, assuming
that the mass of the spring is evenly distributed along its length. The total energy E
of the system is the sum of the kinetic energies of the spring and the mass M and
the potential energy of the extended spring.) (b) Hence show that the frequency of the
oscillations is equal to

√
k/(M + m/3).

1.13 A particle oscillates with amplitude A in a one-dimensional potential U(x) that is
symmetric about x = 0, i.e. U(x) = U(−x). (a) Show, from energy considerations,
that the velocity v of the particle at displacement x from the equilibrium position
(x = 0), is given by

v =
√

2[U(A) − U(x)]/m.

(b) Hence show that the period of oscillation T is given by

T = 4
√

m

2U(A)

∫ A

0

dx√
[1 − U(x)/U(A)]

.
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(c) If the potential U(x) is given by

U(x) = αxn

where α is a constant and n = 2, 4, 6, . . . , obtain the dependence of the period T on
the amplitude A for different values of n = 2, 4, . . . . (Hint: Introduce the new variable
of integration ξ = x/A in the above expression for the period T .)



2
The Damped Harmonic
Oscillator

In our description of an apple swinging back and forth at the end of a string (Section
1.1) we noted that this oscillating system is not ideal. After we set the apple in
motion, the amplitude of oscillation steadily reduces and the apple eventually comes
to rest. This is because there are dissipative forces acting and the system steadily
loses energy. For example, the apple will experience a frictional force as it moves
through the air. The motion is damped and such damped oscillations are the subject
of this chapter. All real oscillating systems are subject to damping forces and will
cease to oscillate if energy is not fed back into them. Often these damping forces
are linearly proportional to velocity. Fortunately, this linear dependence leads to an
equation of motion that can be readily solved to obtain solutions that describe the
motion for various degrees of damping. Clearly the rate at which the oscillator loses
energy will depend on the degree of damping and this is described by the quality of
the oscillator. At first sight, damping in an oscillator may be thought undesirable.
However, there are many examples where a controlled amount of damping is used
to quench unwanted oscillations. Damping is added to the suspension system of a
car to stop it bouncing up and down long after it has passed over a bump in the
road. Additional damping was installed on London’s Millennium Bridge shortly
after it opened because it suffered from undesirable oscillations.

2.1 PHYSICAL CHARACTERISTICS OF THE DAMPED HARMONIC
OSCILLATOR

A tuning fork is an example of a damped harmonic oscillator. Indeed we hear the
note because some of the energy of oscillation is converted into sound. After it is
struck the intensity of the sound, which is proportional to the energy of the tuning
fork, steadily decreases. However, the frequency of the note does not change. The

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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ends of the tuning fork make thousands of oscillations before the sound disappears
and so we can reasonably assume that the degree of damping is small. We may
suspect, therefore, that the frequency of oscillation would not be very different if
there were no damping. Thus we infer that the displacement x of an end of the
tuning fork is described by a relationship of the form

x = (amplitude that reduces with t) × cos ωt

where the angular frequency ω is about but not necessarily the same as would be
obtained if there were no damping. We shall assume that the amplitude of oscillation
decays exponentially with time. The displacement of an end of the tuning fork will
therefore vary according to

x = A0 exp(−βt) cos ωt (2.1)

where A0 is the initial value of the amplitude and β is a measure of the degree
of damping. The minus sign indicates that the amplitude reduces with time. As
we shall see, this expression correctly describes the motion of a damped harmonic
oscillator when the degree of damping is small and so the assumptions we have
made above are reasonable.

2.2 THE EQUATION OF MOTION FOR A DAMPED HARMONIC
OSCILLATOR

An example of a damped harmonic oscillator is shown in Figure 2.1. It is similar
to the simple harmonic oscillator described in Section (1.2.2) but now the mass
is immersed in a viscous fluid. When an object moves through a viscous fluid
it experiences a frictional force. This force dampens the motion: the higher the
velocity the greater the frictional force. So as a car travels faster the frictional
force increases thereby reducing the fuel economy, while the velocity of a falling
raindrop reaches a limiting value because of the frictional force. The damping force
Fd acting on the mass in Figure 2.1 is proportional to its velocity v so long as v

is not too large, i.e.

Fd = −bv (2.2)

k

viscous fluid

m

Figure 2.1 An example of a damped mechanical oscillator showing an oscillating mass
immersed in a viscous fluid.
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where the minus sign indicates that the force always acts in the opposite direction
to the motion. The constant b depends on the shape of the mass and the viscosity
of the fluid and has the units of force per unit velocity. When the mass is displaced
from its equilibrium position there will be the restoring force due to the spring
and in addition the damping force −bv due to the fluid. The resulting equation of
motion is

ma = −kx − bv (2.3a)

or

m
d2x

dt2
+ b

dx

dt
+ kx = 0. (2.3b)

We introduce the parameters

ω2
o = k/m, γ = b/m. (2.4)

In terms of these, Equation (2.3b) becomes

d2x

dt2
+ γ

dx

dt
+ ω2

ox = 0. (2.5)

This is the equation of a damped harmonic oscillator. The relationship k/m = ω2
o is

familiar from our discussion of the simple harmonic oscillator. Now we designate
this angular frequency ωo and describe it as the natural frequency of oscillation ,
i.e. the oscillation frequency if there were no damping. This allows the possibility
that the damping does change the frequency of oscillation. In the present example
the damping force is linearly proportional to velocity. This linear dependence is
very convenient as it has led to an equation that we can readily solve. A damping
force proportional to, say, v2 would be much more difficult to handle. Fortunately,
this linear dependence is a good approximation for many other oscillating systems
when the velocity is small. Equation (2.5) has different solutions depending on
the degree of damping involved, corresponding to the cases of (i) light damping ,
(ii) heavy or over damping and (iii) critical damping . Light damping is the most
important case for us because it involves oscillatory motion whereas the other two
cases do not.

2.2.1 Light damping

This condition corresponds to the mass in Figure 2.1 being immersed in a fluid
of low viscosity like thin oil or even just air. In our previous, qualitative discus-
sion of a lightly damped oscillator, Section 2.1, we suggested an expression for
the displacement that had the form x = A0 exp(−βt) cos ωt . We adopt a similar
functional form here. Then

dx

dt
= −A0 exp(−βt)(ω sin ωt + β cos ωt)
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and
d2x

dt2
= A0 exp(−βt)[2βω sin ωt + (β2 − ω2) cos ωt].

Substituting these into Equation (2.5) and collecting terms in sin ωt and cos ωt

gives

A0 exp(−βt)[(2βω − γω) sin ωt + (β2 − ω2 − γβ + ω2
o) cos ωt] = 0.

This can only be true for all times if the sin ωt and cos ωt terms are both equal to
zero. Therefore,

2βω − γω = 0

giving β = γ/2 and
β2 − ω2 − γβ + ω2

o = 0.

Substituting for β we obtain

ω2 = ω2
o − γ 2/4. (2.6)

So our solution for the equation of the lightly damped oscillator is

x = A0 exp(−γ t/2) cos ωt (2.7)

where ω = (ω2
o − γ 2/4)1/2. Equation (2.7) represents oscillatory motion if ω is

real, i.e. γ 2/4 < ω2
o is the condition for light damping. Equation (2.6) shows that

the angular frequency of oscillation ω is approximately equal to the undamped
value ωo when γ 2/4 	 ω2

o. To obtain the general solution of Equation (2.5) we
need to include a phase angle φ giving

x = A0 exp(−γ t/2) cos(ωt + φ). (2.8)

The parameters γ and ω are determined solely by the properties of the oscillator
while the constants A0 and φ are determined by the initial conditions. For conve-
nience in our following discussion we will take φ = 0. If we let γ = 0 we obtain,
as expected, our previous results for the simple harmonic oscillator.

A graph of x = A0 exp(−γ t/2) cos ωt is shown in Figure 2.2 where the steady
decrease in the amplitude of oscillation is apparent. The dotted lines represent the
exp(−γ t/2) term which forms an envelope for the oscillations. The zeros in x

occur when cos ωt is zero and so are separated by π/ω. Therefore the period of
the oscillation T , equal to twice this separation, is 2π/ω. Successive maxima are
also separated by T . We consider successive maxima An and An+1. If An occurs
at time to then

An = x(to) = A0 exp(−γ to/2) cos ωto

and
An+1 = x(to + T ) = A0 exp[−γ (to + T )/2] cos ω(to + T ).
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t

T

x

An
An+1

A0 exp(−gt/2)

to to + T

Figure 2.2 A graph of x = A0 exp(−γ t/2) cos ωt illustrating the decay in amplitude of a
damped harmonic oscillator. The dotted lines represent the exp(−γ t/2) term of Equation
(2.8), which forms an envelope of the oscillations.

Since cos ωto = cos ω(to + T ) we have

An

An+1
= exp

(
γ T

2

)
. (2.9)

We see that successive maxima decrease by the same fractional amount. The natural
logarithm of An/An+1, i.e.

ln

(
An

An+1

)
= γ T

2
,

is called the logarithmic decrement and is a measure of this decrease. Note that
the larger amplitude occurs in the numerator of this expression.

2.2.2 Heavy damping

Heavy damping occurs when the degree of damping is sufficiently large that the
system returns sluggishly to its equilibrium position without making any oscillations
at all. This corresponds to the mass in Figure 2.1 being immersed in a fluid of
large viscosity like syrup. For this case the oscillatory part of our solution, cos ωt

in Equation (2.1), is no longer appropriate. Instead we replace it with the general
function f (t), i.e.

x = exp(−βt)f (t). (2.10)

Substituting x and its derivatives into Equation (2.5) and letting β = γ/2 gives

d2f

dt2
+ (ω2

o − γ 2/4)f = 0 (2.11)

or

d2f

dt2
= α2f (2.12)
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where α2 = (γ 2/4 − ω2
o). The solutions to Equation (2.12) depend dramatically

on the sign of α2. The α2 term is negative when γ 2/4 < ω2
o and this leads to an

oscillatory solution with the complex form f (t) = A exp i(αt + φ). This solution
is not appropriate for the case of heavy damping where there is no oscillation. In
fact it corresponds to the case of light damping, discussed in Section 2.2.1. The
α2 term is positive when γ 2/4 > ω2

o. In this case Equation (2.12) has the general
solution

f (t) = A exp(αt) + B exp(−αt),

giving

x = exp(−γ t/2)[A exp(αt) + B exp(−αt)]

= A exp[−γ/2 + (γ 2/4 − ω2
o)

1/2]t + B exp[−γ/2 − (γ 2/4 − ω2
o)

1/2]t. (2.13)

This is the non-oscillatory solution that we require. The term (γ 2/4 − ω2
o)

1/2 is
clearly less than γ/2 and so the exponents of both exponential terms are negative
in sign. Hence the displacement reduces to zero with time and there is no oscillation.

2.2.3 Critical damping

An interesting situation occurs when γ 2/4 = ω2
o. Then Equation (2.12) becomes

d2f

dt2
= 0. (2.14)

This equation has the general solution

f = A + Bt, (2.15)

leading to

x = A exp(−γ t/2) + Bt exp(−γ t/2) (2.16)

where A has the dimension of length and B has the dimensions of velocity. This
is the case of critical damping. Here the mass returns to its equilibrium position in
the shortest possible time without oscillating. Critical damping has many important
practical applications. For example, a spring may be fitted to a door to return
it to its closed position after it has been opened. In practice, however, critical
damping is applied to the spring mechanism so that the door returns quickly to
its closed position without oscillating. Similarly, critical damping is applied to
analogue meters for electrical measurements. This ensures that the needle of the
meter moves smoothly to its final position without oscillating or overshooting so
that a rapid reading can be taken. Springs are used in motor cars to provide a
smooth ride. However damping is also applied in the form of shock absorbers
as illustrated schematically in Figure 2.3. Without these the car would continue
to bounce up and down long after it went over a bump in the road. A shock
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motor car

spring

wheel

shock
absorber

Figure 2.3 Schematic diagram of a car suspension system showing the spring and shock
absorber.

absorber consists essentially of a piston that moves in a cylinder containing a
viscous fluid. Holes in the piston allow it to move up and down in a damped
manner and the damping constant is adjusted so that the suspension system is close
to the condition of critical damping. You can see the effect of a shock absorber by
pushing down on the front of a car, just above a wheel. The car quickly returns
to equilibrium with little or no oscillation. You may also notice that the resistance
is greater when you push down quickly than when you push down slowly. This
reflects the dependence of the damping force on velocity.

In summary we find three types of damped motion and these are illustrated in
Figure 2.4. They correspond to the conditions:

(i) (γ 2/4 < ω2
o) Light damping; damped oscillations.

(ii) (γ 2/4 > ω2
o) Heavy damping; exponential decay of displacement.

(iii) (γ 2/4 = ω2
o) Critical damping; quickest return to equilibrium position

without oscillation.

t

x

critical damping heavy damping

light damping

Figure 2.4 The motion of a damped oscillator for the cases of light damping, heavy damping
and critical damping.
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To appreciate the physical origin of these different types of motion, we recall
that γ 2/4 is the damping term while ω2

o is proportional to the spring constant
k through ω2

o = k/m. When the damping term is small compared with k/m, the
motion is governed by the restoring force of the spring and we have damped
oscillatory motion. Conversely, when the damping term is large compared with
k/m the damping force dominates and there is no oscillation. At the point of
critical damping the two forces balance. We finally note that the relative size of
γ 2/4 compared with ω2

o also determines the response of the oscillator to an applied
periodic driving force, as we shall see in Chapter 3.

Worked example

A mass of 2.5 kg is attached to a spring that has a value of k equal to
600 N m−1. (a) Determine the value of the damping constant b that is required
to produce critical damping. (b) The mass receives an impulse that gives it
a velocity of vi = 1.5 m s−1 at t = 0. Determine the maximum value of the
resultant displacement and the time at which this occurs.

Solution

(a) For critical damping, γ 2/4 = b2/4m2 = ω2
o = k/m. Therefore,

b =
√

4mk = √
4 × 2.5 × 600 = 77.5 kg s−1.

(b) General solution for critical damping is

x = A exp(−γ t/2) + Bt exp(−γ t/2).

Therefore
v = dx

dt
= exp(−γ t/2)(B − γBt/2 − γA/2).

Initial conditions, x = 0 and v = vi at t = 0, give A = 0 and B = vi . There-
fore,

x(t) = vit exp(−γ t/2).

Maximum displacement occurs when dx/dt = 0, giving

vi exp(−γ t/2)(1 − γ t/2) = 0.

Hence
t = 2

γ
= 2m

b
= 2 × 2.5

77.5
= 6.5 × 10−2 s

and

x = 2vi

eγ
= 2mvi

eb
= 2 × 2.5 × 1.5

e × 77.5
= 3.6 × 10−2 m.
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x is a product of a linearly increasing function and an exponentially decaying
one. Of course the exponential function wins in the end and the displacement
steadily reduces to zero as shown in Figure 2.5.
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time (s)

di
sp
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ce
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en

t (
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)

0

1

2

3

4

Figure 2.5 An example of critical damping showing the steady decrease of the dis-
placement to zero following an impulse applied at time t = 0. The dashed lines indicate
the maximum value of the displacement and the time at which it occurs.

2.3 RATE OF ENERGY LOSS IN A DAMPED HARMONIC
OSCILLATOR

The mechanical energy of a damped harmonic oscillator is eventually dissipated
as heat to its surroundings. We can deduce the rate at which energy is lost by
considering how the total energy of the oscillator changes with time. The total
energy E is given by

E = K + U = 1

2
mv2 + 1

2
kx2. (1.19)

For the case of a very lightly damped oscillator, i.e. γ 2/4 	 ω2
o, it follows from

Equation (2.6) that to a good approximation ω = ωo and from Equation (2.7) that

x = A0 exp(−γ t/2) cos ωot. (2.17)

Hence,

v = dx

dt
= −A0ωo exp(−γ t/2)[sin ωot + (γ /2ωo) cos ωot].

Since γ/2 	 ωo, we can neglect the second term in the square brackets and write

v = dx

dt
= −A0ωo exp(−γ t/2)(sin ωot).

Then
E = 1

2
A2

0 exp(−γ t)(mω2
o sin2 ωot + k cos2 ωot).
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Substituting for ω2
o = k/m, we obtain

E = 1

2
kA2

0 exp(−γ t)

giving

E(t) = E0 exp(−γ t) (2.18)

where E0 is the total energy of the oscillator at t = 0. We have the important
and simple result that the energy of the oscillator decays exponentially with time
as shown in Figure 2.6. We also have an additional physical meaning for γ . The
reciprocal of γ is the time taken for the energy of the oscillator to reduce by a
factor of e. Defining τ = 1/γ , we obtain

E(t) = E0 exp(−t/τ ) (2.19)

where τ has the dimensions of time and is called the decay time or time constant
of the system. There are many examples of both classical and quantum-mechanical
systems that give rise to exponential decay of their energy with time as described
by Equation (2.19) and for some of these τ is called the lifetime.

t0

E0

E(t) = E0 exp(−g t)

E

Figure 2.6 The exponential decay of the energy of a very lightly damped harmonic
oscillator.

The energy of an oscillator is dissipated because it does work against the damping
force at the rate (damping force × velocity). We can see this by differentiating
Equation (1.19) with respect to time. Thus

dE

dt
= d

dt

(
1

2
mv2 + 1

2
kx2

)
= mv

dv

dt
+ kx

dx

dt
= (ma + kx)v

which, using Equation (2.3a), gives

dE

dt
= (−bv)v. (2.20)
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2.3.1 The quality factor Q of a damped harmonic oscillator

It is useful to have a figure of merit to describe how good an oscillator is, where
we imply that the smaller the degree of damping the higher the quality of the
oscillator. Moreover we would like a figure of merit that is dimensionless and can
readily be applied to any oscillator whether it is mechanical, electrical or otherwise.
This is called the quality factor Q of the oscillator and is defined below. It is rea-
sonable to expect that an oscillator with a high Q-value would make an appreciable
number of oscillations before its energy is reduced substantially, say by a factor
of e. Equation (2.19) shows that this reduction occurs after time τ and we might
therefore compare τ with the period of oscillation T . If τ is large compared with T

we would have many oscillations and the Q-value of the oscillator would be large.
Conversely when τ approaches T in value there would be a small number of oscil-
lations and the Q-value would be small. Thus the ratio τ/T would provide us with
a useful figure of merit. Conventionally, however, it is quantities that are related to
the inverse of τ and T that are compared. These are the damping term γ and the
angular frequency of oscillation which is equal to ωo to a very good approximation
under most circumstances. The quality factor Q is therefore defined as

Q = ωo

γ
. (2.21)

γ and ωo have the same dimensions as each other, [time]−1, and Q is a pure,
dimensionless number. In Section 2.2 we compared the relative sizes of γ 2/4
and ω2

o to deduce what sort of damped motion would result. We now have
a new physical interpretation for this comparison. The reciprocal of γ is a
characteristic time for the exponential decay of the energy and the reciprocal of
ωo is a characteristic of the oscillation period. Figure 2.7 shows the behaviour of
a particular oscillator with various amounts of applied damping together with the
respective Q-values. It is quite evident that the higher the Q-value, the greater
the number of oscillations. Also shown for comparison is the behaviour of the
oscillator for the condition of critical damping.

We can define the quality factor Q in a different way by considering the rate at
which the energy of the oscillator is dissipated. If we consider the energy of a very
lightly damped oscillator one period apart we have from Equation (2.18),

E1 = E0 exp(−γ t), E2 = E0 exp[−γ (t + T )]

giving
E2

E1
= exp(−γ T ).

The series expansion of ex is

ex = 1 + x + x2

2!
+ x3

3!
· · · .

Thus, when x 	 1,
ex � 1 + x



44 The Damped Harmonic Oscillator

t

D
is

pl
ac

em
en

t,
x

t

t

t

(a)

(b)

(c)

(d)

critical damping

Q = 300

Q = 10

Q = 3

Figure 2.7 The behaviour of an oscillator with various degrees of damping. The corre-
sponding Q-values are (a) 300, (b) 10 and (c) 3. The case of critical damping for the
oscillator is also shown (d).

to a good approximation. For a very lightly damped oscillator, we have γ T 	 1
and therefore

E1 − E2

E1
� γ T � 2πγ

ωo
= 2π

Q
(2.22)

where we have substituted ωo for ω. The fractional change in energy per cycle is
equal to 2π/Q and so the fractional change in energy per radian is equal to 1/Q.
We then define Q by

Q = energy stored in the oscillator

energy dissipated per radian
. (2.23)

We can usefully cast our previous equations in terms of the dimensionless quantity
Q. Thus the equation of a damped oscillator, Equation (2.5), becomes

d2x

dt2
+ ωo

Q

dx

dt
+ ω2

ox = 0 (2.24)
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and the angular frequency ω, Equation (2.6), becomes

ω = ωo(1 − 1/4Q2)1/2. (2.25)

Equation (2.25) confirms our assumption that ω is equal to ωo to a good approxi-
mation under most circumstances. Even when Q is as low as 5, ω is different from
ωo by just 0.5%.

Worked example

When the E string of a guitar (frequency 330 Hz) is plucked, the sound intensity
decreases by a factor of 2 after 4 s. Determine (i) the decay time τ , (ii) the
quality factor Q and (iii) the fractional energy loss per cycle.

Solution
(i) The sound intensity is proportional to the energy of oscillation.

E(t) = E0 exp(−t/τ )

giving

τ = t

ln[E0/E(t)]
= 4

ln 2
= 5.77 s.

(ii) Q = ωo/γ = ωoτ = 2π × 330 × 5.77 = 1.2 × 104.

(iii)
�E

E
= 2π

Q
= 5.3 × 10−4.

Worked example

The electron in an excited atom behaves like a damped harmonic oscillator
when the atom radiates light. The lifetime of an excited atomic state is 10−8 s
and the wavelength of the emitted light is 500 nm. Deduce a value for the
quality factor.

Solution
The lifetime corresponds to τ which is equal to 1/γ . The frequency of oscil-
lation ν is given by ν = c/λ and so ωo = 2πc/λ. Therefore

Q = ωo

γ
= 2π × 3 × 108 × 10−8

500 × 10−9
≈ 4 × 107

which is a very high value indeed.
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TABLE 2.1 Typical values of Q for a variety of damped
oscillators.

Damped oscillator system Typical value of Q

Paper weight suspended on a rubber band 10
Clock pendulum 75
Electrical LCR circuit 200
Plucked violin string 103

Microwave cavity oscillator 104

Quartz crystal 106

Typical values of Q for a variety of damped oscillators are presented in Table 2.1.

2.4 DAMPED ELECTRICAL OSCILLATIONS

In our mechanical example of a mass moving through a fluid we saw that the fluid
offered a resistance that damped the motion. In the case of an electrical oscillator
it is the resistance in the circuit that impedes the flow of current. An electrical
oscillator is shown in Figure 2.8. It consists of an inductor L and capacitor C

L

R

C

Figure 2.8 The circuit of a damped electrical oscillator consisting of an inductor L, a
capacitor C and a resistor R connected in series.

as before (see Figure 1.21) but now there is also the resistor R. We charge the
capacitor to voltage VC = q/C, and then close the switch. Kirchoff’s law gives

L
dI

dt
+ RI + q

C
= 0

or

L
d2q

dt2
+ R

dq

dt
+ q

C
= 0. (2.26)

This has the identical form to Equation (2.3b),

m
d2x

dt2
+ b

dx

dt
+ kx = 0, (2.3b)
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and we recognise the analogous quantities we met before: q is equivalent to x,
L to m and k to 1/C. However, we see that R is analogous to the mechanical
damping constant b and so R/L is the equivalent of γ (= b/m). Since the above
differential equations have identical forms, their solutions also have identical forms.
The importance of this is that we can use our results for the mechanical oscillator
to immediately write down the corresponding results for the electrical case. Thus
from Equation (2.7) it follows that

q = q0 exp(−Rt/2L) cos[(1/LC − R2/4L2)1/2t] (2.27)

where q0 is the initial charge on the capacitor. This corresponds to the case of light
damping which now means that R2/4L2 < 1/LC . Since the voltage VC across the
capacitor is equal to q/C

VC = V0 exp(−Rt/2L) cos[(1/LC − R2/4L2)1/2t] (2.28)

where V0 is the initial value of the voltage. This is an oscillating voltage at an
angular frequency ω given by

ω2 = 1

LC
− R2

4L2
(2.29)

which is essentially equal to 1/LC when R2/4L2 	 1/LC . The amplitude of the
oscillating voltage decays exponentially with a time constant of R/2L and so R/L

has the dimensions of [time]−1. For R2/4L2 > 1/LC we have the case of heavy
damping and for R2/4L2 = 1/LC we have critical damping. Similarly we find that
the quality factor Q of the circuit is given by

Q = 1

R

√
L

C
. (2.30)

For example, with L = 10 mH, C = 2.5 nF and R = 10 �, Q = 200, which is
a typical value for an electrical oscillator. Again we emphasise the exact corre-
spondence between the equations and solutions that describe the mechanical and
electrical systems, so that mechanical systems can be simulated by electrical cir-
cuits. Such analogue computers can greatly facilitate the design and development
of mechanical systems.

PROBLEMS 2

2.1 A spring balance consists of a pan that hangs from a spring. A damping force Fd = −bv
is applied to the balance so that when an object is placed in the pan it comes to rest in
the minimum time without overshoot. Determine the required value of b for an object
of mass 2.5 kg that extends the spring by 6.0 cm. (Assume g = 9.81 m s−2.)

2.2 A mass of 0.50 kg hangs from the end of a light spring. The system is damped by a light
sail attached to the mass so that the ratio of amplitudes of consecutive oscillations is
equal to 0.90. It is found that 10 complete oscillations takes 25 s. Obtain a quantitative
expression for the damping force and determine the damping factor γ of the system.
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The figure shows a graph of displacement x against time t for a damped harmonic
oscillator. Deduce the quality factor Q of the oscillator.

2.4 The energy of a damped harmonic oscillator is observed to reduce by a factor of 2 after
10 complete cycles. By what factor will it reduce after 50 complete cycles?

2.5 An undamped oscillator has a natural frequency ωo of π rad s−1. Various amounts
of damping are added to the system to give values of the damping factor γ equal to
0.01, 0.30 and 1.0 s−1, respectively. (a) For each value of γ find the corresponding
Q-value and frequency ω of the damped oscillations. Comment on the change in ω
over this range of γ . (b) For each of the values of Q, use a spreadsheet program to plot
x = A0 exp(−γ t/2) cos ωt over the time period t = 0 to 10 s, using a value of 10 mm
for A0. (c) Obtain an expression for x for the case of critical damping with the initial
conditions, x = 10 mm and dx/dt = 0. Plot x over the time period t = 0 to 10 s.

2.6 When damping is applied to a simple harmonic oscillator its frequency of oscillation
changes from ωo to a different frequency ω. Show for a very lightly damped harmonic
oscillator of quality factor Q that the fractional change in frequency is equal to 1/8Q2

to a good approximation.

2.7 A simple pendulum is constructed from an aluminium sphere attached to a light rod.
A second pendulum is constructed of the same length but with a brass sphere. The
diameters of the two spheres are the same. The two pendulums are set in motion at
the same time with the same amplitude of oscillation. After 10 min the amplitude of
oscillation of the aluminium pendulum has decreased to one-half its initial value. By
what factor has the amplitude of oscillation of the brass pendulum decreased at this
time? (Assume that the damping force acting on a pendulum is directly proportional to
the velocity of the sphere. The densities of aluminium and brass are 2.7 × 103 kg m−3

and 8.5 × 103 kg m−3, respectively.)

2.8 According to classical electromagnetic theory, an accelerating electron radiates energy
at a rate Ke2a2/c3, where a is the acceleration, e is the electronic charge, c is the
velocity of light and K is a constant with a value of 6 × 109 N m2 C−2. Suppose
that the motion of the electron can be represented by the expression x = A sin ωt dur-
ing one cycle of its motion. (a) Show that the energy radiated during one cycle is
Ke2πω3A2/c3. (b) Recalling that the total energy of a harmonic oscillator is 1

2 mω2A2

where m is the mass, show that the quality factor Q is mc3/Ke2ω. (c) Using a typ-
ical value of ω for a visible photon, estimate the ‘lifetime’ of the radiating system
(e = 1.6 × 10−19 C, mass of electron = 9.1 × 10−31 kg).



3
Forced Oscillations

So far we have considered free oscillations where a system is disturbed from rest
and then oscillates about its equilibrium position with steadily decreasing amplitude,
as when we strike a bell. We now turn our attention to forced oscillations where
we apply a periodic driving force to the system. We are surrounded by examples
of such forced oscillations. We give a push to a playground swing at regular
intervals to sustain its motion. In a pendulum clock the escapement mechanism
gives regular impulses to the pendulum and in an analogous fashion the crystal
in a crystal-controlled clock receives regular electrical impulses to maintain its
oscillation. A musician uses a bow to play a note on a violin while air is driven
into the pipes of an organ to sustain a note. (By contrast a harp and a guitar are
plucked instruments and provide examples of free oscillations.) On a much larger
scale the moon exerts a gravitational pull that exerts a periodic driving force on the
oceans of the Earth that strongly influences their tidal motion. At the microscopic
level, the radiation in a microwave oven drives the electrons of the water molecules
in the item being cooked.

Forced oscillations are the subject of the present chapter. We will see that the
system always oscillates at the frequency of the applied force, apart from an ini-
tial transient response. We will see that the frequency of the applied force has a
dramatic effect on the amplitude of the oscillations, especially close to the nat-
ural frequency of the system. For example, a singer can cause a wine glass to
shatter when they produce a note that is at the resonance frequency of the glass
(the frequency you hear when you tap the glass). The shaking of the ground in an
earthquake may cause a building to collapse. The important point is that a peri-
odic force can produce large and possibly catastrophic effects when applied at the
resonance frequency. We will see that the sharpness of the response to the applied
force depends on the quality factor Q of the oscillator. This is the same factor that
we encountered in our discussion of damped harmonic motion in Section 2.3.1. In
this chapter we also introduce the complex representation of oscillatory motion.
We summarise the basic rules for manipulating complex numbers in Section 3.6.1

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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and then illustrate their use in the description and analysis of oscillatory motion in
Sections 3.6.2 and 3.6.3, respectively.

3.1 PHYSICAL CHARACTERISTICS OF FORCED HARMONIC
MOTION

We can observe the main physical characteristics of forced harmonic motion
using a simple pendulum. We drive the pendulum by moving its point of suspension
backwards and forwards harmonically, along a horizontal direction. At very low
driving frequencies the pendulum mass closely follows the movement of the point
of suspension with them both moving in the same direction as each other, i.e.
they have the same amplitude and move in phase. As the driving frequency is
increased the amplitude of oscillation increases dramatically and becomes much
larger than the movement of the point of suspension. We might rightly suspect that
the maximum amplitude occurs when the pendulum is driven close to its natural
frequency of oscillation . The system is then said to be in resonance. We get the
largest amplitude at resonance because this is the frequency at which the pendulum
‘wants’ to oscillate. As the driving frequency is increased further the amplitude
of oscillation decreases but perhaps more surprisingly the mass now moves in the
opposite direction to the point of suspension, although still with the same frequency.
At even higher frequencies we reach the situation where the pendulum mass hardly
moves at all. This is because it has inertia. The simple pendulum serves as a useful
example, but all forced oscillators behave in this manner.

3.2 THE EQUATION OF MOTION OF A FORCED HARMONIC
OSCILLATOR

3.2.1 Undamped forced oscillations

We begin with a mass m on a horizontal spring as shown in Figure 3.1. The
spring constant is k and the mass moves without friction on a horizontal surface.
The displacement x is measured from the equilibrium position of the mass. This
system is similar to the one described in Section 1.2.1 but now we imagine that
a periodic driving force F = F0 cos ωt is applied to it. The mass is acted upon
by the combination of the restoring force from the spring and the applied driving
force. From Newton’s second law we obtain

m
d2x

dt2
+ kx = F0 cos ωt. (3.1)

x

k

m F = F0 coswt

Figure 3.1 Application of a periodic driving force F = F0 cos ωt to a harmonic oscillator
consisting of a mass m on the end of a spring of spring constant k.
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This is the equation of motion for forced oscillations of a harmonic oscillator when
there is no damping. We shall deduce a solution for Equation (3.1) and see how
the oscillator behaves as we change the angular frequency ω of the driving force.
First we note one limit of ω, namely ω = 0. If we have a force F0 that does not
change with time, i.e. ω = 0, the acceleration term is zero. The displacement x is
then equal to F0/k. So, at very low driving frequencies when ω tends to zero, the
amplitude of oscillation will tend to the value F0/k.

We deduce a solution for forced oscillations, Equation (3.1), using the
arrangement of a mass m on a vertical spring, of spring constant k , as shown in
Figure 3.2. Here we move the upper end s of the spring up and down harmonically
in the vertical direction according to ξ = a cos ωt where a is the amplitude and
ω is the applied frequency. (This simple but very informative experiment can be
performed using a few elastic bands strung together with a small mass attached
to the lower end.) We measure the displacement x from the equilibrium position
of the mass and take displacements in the downward direction as positive. The
resultant equation of motion is

m
d2x

dt2
= −k(x − ξ) (3.2)

equilibrium

position

equilibrium

position

equilibrium

length

s

x

k

x = a cos wt

m

Figure 3.2 Practical realisation of forced oscillations, where the top of the spring s is
moved up and down harmonically about its equilibrium position.

or, substituting for ξ ,

m
d2x

dt2
+ kx = ka cos ωt. (3.3)

Equation (3.3) has exactly the same form as Equation (3.1) with

ka = F0. (3.4)

The response of the system is similar to that of the driven pendulum described
in Section 3.1. At very low frequencies the amplitude of oscillations tends to
the value of the amplitude a of the point of suspension. Under these conditions
the motion is governed by the spring constant or stiffness of the spring. As ω
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is increased the amplitude of oscillation increases dramatically as the resonance
frequency is approached. As ω is increased above the resonance frequency the
amplitude decreases and the mass moves in the opposite direction to the driving
force. At higher frequencies still, the amplitude tends to zero when the motion is
governed by the inertia of the mass. At all frequencies, however, the mass moves
up and down periodically at the same frequency ω as the driving force. This
behaviour suggests that the displacement x of the mass can be written as

x = A(ω) cos(ωt − δ). (3.5)

In this equation, A(ω) is the physical amplitude that we observe and which we
naturally define as a positive quantity. δ is a phase angle but has a different
meaning to the phase angle φ in the expression given in Chapter 1:

x = A cos(ωt + φ). (1.14)

In Equation (1.14) φ relates to the initial conditions and along with A completely
defines the free oscillations. In Equation (3.5), δ is the phase angle between the
driving force and the resultant displacement. The minus sign of δ in Equation (3.5)
implies that the displacement lags behind the driving force and this is indeed the
case in forced oscillations. From our previous considerations, we expect δ to be zero
at very low frequencies and equal to π at very high frequencies. Substituting x and
its second derivative in Equation (3.3), and using ω2

o = k/m (Equation (2.4)) gives

−ω2A(ω) cos(ωt − δ) + ω2
oA(ω) cos(ωt − δ) = ω2

oa cos ωt.

Expanding terms in cos(ωt − δ) leads to

− ω2
oA(ω)(cos ωt cos δ + sin ωt sin δ) + ω2

oA(ω)(cos ωt cos δ + sin ωt sin δ)

= ω2
oa cos ωt.

Then equating coefficients of cos ωt and sin ωt we obtain

A(ω)(1 − ω2/ω2
o) cos δ = a (3.6a)

and

A(ω)(1 − ω2/ω2
o) sin δ = 0. (3.6b)

Dividing Equation (3.6b) by Equation (3.6a) gives tan δ = 0 and so δ = 0 or π

as expected. When δ = 0, Equation (3.6a) gives

A(ω) = a

(1 − ω2/ω2
o)

. (3.7)

Since the amplitude A(ω) is defined as a positive quantity, Equation (3.7) shows
that ω must be less than ωo when δ = 0. When δ = π, Equation (3.6a) gives

A(ω) = −a

(1 − ω2/ω2
o)

. (3.8)
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Now A(ω) is a positive quantity only when ω is greater than ωo. Thus we conclude
that x = A(ω) cos(ωt − δ) is a solution for the undamped forced oscillator and that
δ = 0 for ω < ωo and δ = π for ω > ωo.

Equation (3.7) shows that A(ω) tends to a(= F0/k) as ω tends to zero and
Equation (3.8) shows that A(ω) tends to zero as ω tends to infinity, as we expect.
However we also see that A(ω) tends to infinity as ω approaches ωo. A plot of
A(ω) against ω, according to Equations (3.7) and (3.8), is shown in Figure 3.3.
The behaviour of A(ω) as ω approaches ωo is clearly unphysical and arises because
damping forces have been neglected. These are present in real systems and limit
the maximum value of A(ω) as we shall see in Section 3.2.2. Figure 3.3 also shows
the behaviour of the phase angle δ with respect to ω. The change of the phase angle
from zero to π is consistent with the behaviour of the forced oscillators we have
considered but its sharp and abrupt change at ω = ωo is unphysical. This is again
because the effects of damping have not been included.

(a)

wo

wo

w

w

F0 k

A(w)

0

(b)

π

d

Figure 3.3 (a) A plot of the amplitude of oscillation A(ω) of a forced oscillator against
driving frequency ω, when there is no damping. (b) The variation of the phase angle δ

with driving frequency. δ is the phase angle between the driving force and the resultant
displacement which lags behind the driving force.

The amplitude A(ω) which we have defined above is the physical amplitude. It
is always positive and is given by different expressions, (3.7) and (3.8) for ω < ωo

and ω > ωo, respectively. An alternative description, which avoids this division and
so allows both situations to be handled simultaneously, is sometimes convenient
(cf. Section 4.5). Instead of Equation (3.5), we write the solution of Equation (3.3)
in the form

x = C(ω) cos ωt. (3.5a)
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Comparing Equations (3.5) and (3.5a), and using Equations (3.7) and (3.8), at once
gives

C(ω) = a

(1 − ω2/ω2
o)

(3.7a)

for both ω < ωo and ω > ωo. [For ω > ωo, this follows since δ = π and
A(ω) cos(ωt − π) = −A(ω) cos ωt .] We might call C(ω) the algebraic amplitude
which, in contrast to the physical amplitude A(ω), is given by the same expression
for all values of ω. In contrast to A(ω), which is always positive, C(ω) is positive
for ω < ωo and negative for ω > ωo.

3.2.2 Forced oscillations with damping

We will again assume that the damping force is directly proportional to the
velocity of the mass as we did in Section 2.2. This adds the damping term bdx/dt

to Equation (3.1), so that the equation of motion becomes

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos ωt. (3.9)

We make the substitutions b/m = γ and k/m = ω2
o, Equation (2.4), to obtain

d2x

dt2
+ γ

dx

dt
+ ω2

ox = F0

m
cos ωt. (3.10)

This is the equation for forced oscillations with damping. Again we try a solution of
the form x = A(ω) cos(ωt − δ) and substitute for x and its derivatives in Equation
(3.10), remembering that F0 = ka, Equation (3.4). Then equating the coefficients
of cos ωt and sin ωt we obtain

A(ω)[(ω2
o − ω2) cos δ + ωγ sin δ] = ω2

oa (3.11a)

and

(ω2
o − ω2) sin δ = ωγ cos δ, (3.11b)

giving

tan δ = ωγ

(ω2
o − ω2)

. (3.12)

We see that the phase angle δ, as well as the amplitude A(ω), depends on the
driving frequency ω. Using the mathematical nomenclature → meaning ‘tends to’,
inspection of Equation (3.12) shows that

as ω → 0, tan δ → 0, and δ → 0,

as ω → ∞, tan δ → 1/(−∞), and δ → π,

and when ω = ωo, tan δ = ∞, and δ = π/2
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As the angular frequency of the applied force varies from very low to very high
values, so tan δ varies continuously from zero to π and passes through π/2 at
precisely the frequency ωo. It may seem surprising that the displacement lags
behind the driving force by π/2 at resonance. However, in a harmonic oscillator,
the velocity is always π/2 ahead of the displacement. This means that at resonance
the mass is always moving in the same direction as the driving force, as when we
give a push to a playground swing. From Equation (3.12) we can construct the
right-angled triangle shown in Figure 3.4 to obtain

[(w o
2 – w

2 )2 + w
2 g

2 ]1
/2

(wo
2–w2)

wg

d

Figure 3.4 Geometrical construction for the phase angle δ.

sin δ = ωγ

[(ω2
o − ω2)2 + ω2γ 2]1/2

(3.13)

and

cos δ = (ω2
o − ω2)

[(ω2
o − ω2)2 + ω2γ 2]1/2

. (3.14)

Substituting for sin δ and cos δ in Equation (3.11) we finally obtain

A(ω) = aω2
o

[(ω2
o − ω2)2 + ω2γ 2]1/2

(3.15)

which describes the amplitude dependence on driving frequency ω for forced oscil-
lations with damping. We note that Equation (3.15) reduces to the result for the
undamped case, when γ is zero. Inspection of Equation (3.15) shows that

as ω → 0, A(ω) → a(=F0/k),

as ω → ∞, A(ω) → 0,

and when ω = ωo, A(ω) = aωo/γ.

These results are similar to the undamped case except that the amplitude does not
go to infinity at ω = ωo. Furthermore, the maximum amplitude of oscillation no
longer occurs at ωo. For A(ω) to be a maximum, the denominator in Equation
(3.15) must be a minimum. This occurs when

d

dω
[(ω2

o − ω2)2 + ω2γ 2]1/2 = 0,
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from which

ω = ωo(1 − γ 2/2ω2
o)

1/2 ≡ ωmax (3.16)

follows. The frequency ωmax at which the maximum amplitude occurs is a lower
frequency than ωo although we will see that the difference is usually very small.
We can find the maximum value of the amplitude Amax by substituting ωmax in
Equation (3.15). The result is

Amax = aωo/γ

(1 − γ 2/4ω2
o)

1/2
. (3.17)

The dependences of the amplitude A(ω) and the phase angle δ on the driving
frequency ω are shown in Figure 3.5. (We recall that δ is the phase angle by which
the displacement lags behind the driving force.) These curves are similar to those
for the undamped case (Figure 3.3). With damping, however, the phase angle varies
continuously; the maximum amplitude remains finite although large and occurs at
a lower frequency than ωo. Finally, in order to make Equation (3.15) more general,
we make use of the substitution F0 = ka, Equation (3.4), to obtain

A(ω) = F0/m

[(ω2
o − ω2)2 + ω2γ 2]1/2

. (3.18)

0

0
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(b)
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Figure 3.5 (a) A plot of the amplitute A(ω) of a forced oscillator against the driving
frequency ω for the case where damping is present. (b) The variation of the phase angle δ

with driving frequency.
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The amplitude A(ω) is proportional to the amplitude F0 of the applied force and
depends on the applied frequency. We emphasise that a periodic driving force can
produce oscillations of large amplitude when applied at the resonance frequency.
It may then be desirable to add damping to limit the amplitude. For example,
sky scrapers will sway in a strong wind. To ensure that the induced oscillations
do not reach dangerously high levels, damping mechanisms are included in the
construction of such buildings.

In our discussion of damped free oscillations, Section 2.3.1, we defined the
quality factor Q of the system by

Q = ωo

γ
, (2.21)

i.e. as the ratio of the natural frequency ωo to the damping term γ , essentially a
measure of the number of complete oscillations before the oscillations die away.
Q also has important significance in the description of forced oscillations as we
will see in Section 3.3. In the meantime we use the substitution Q = ωo/γ in the
equations for ωmax and Amax. Equation (3.16) leads to

ωmax = ωo(1 − 1/2Q2)1/2, (3.19)

and Equation (3.17) to

Amax = aQ

(1 − 1/4Q2)1/2
. (3.20)

For the case of light damping, when Q � 1, ωmax = ωo and Amax = aQ to good
approximations. Thus under this condition, the maximum amplitude of oscillation,
i.e. resonance, occurs for all practical purposes at the natural frequency of free
oscillations ωo. Moreover, at this frequency we see that the forced oscillator acts
like an amplifier with an amplification factor equal to Q.

Worked example

A mass of 1.5 kg rests on a horizontal table and is attached to one end of a
spring of spring constant 150 N m−1. The other end of the spring is moved
in the horizontal direction according to x = a cos ωt where a = 5 × 10−3 m
and ω = 6π rad s−1. The damping constant b = 3.0 N m−1 s. Determine the
amplitude and relative phase of the steady state oscillations of the mass. Show
that if the applied frequency were adjusted for resonance, the mass would
oscillate with an amplitude of approximately 2.5 × 10−2 m.

Solution

ωo =
√

k/m =
√

150/1.5 = 10 rad s−1, and γ = b/m = 2.0 s−1.
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A(ω) = ak/m

[(ω2
o − ω2)2 + ω2γ 2]1/2

= 150 × 5 × 10−3

1.5{[102 − (6π)2]2 + 22(6π)2}1/2
= 1.9 × 10−3 m.

tan δ = ωγ

(ω2
o − ω2)

= 6π × 2

(102 − (6π)2)
= −0.15.

Since ω > ωo, the phase angle must lie between π/2 and π. Then δ = 3.0 rad.
At resonance ω � ωo and A = Amax � aωo/γ , as follows from Equation
(3.17), since ωo/γ = 5. Hence Amax � 2.5 × 10−2 m.

Worked example

Figure 3.6 shows a schematic diagram of a system that is used to isolate
a platform from floor vibrations. The mass of the platform is m, the spring
constant of the system is k and there is a damping mechanism (called a dashpot)
with damping constant b. If the floor is vibrating according to ξ = A cos ωt

with respect to its equilibrium position, obtain an expression for the maximum
value of the displacement x of the platform from its equilibrium position in
terms of A and ω.

floor

damping
mechanism

platform

equilibrium
position

x = A cos wt

x

equilibrium position

Figure 3.6 Vibration-isolation system showing a platform mounted on springs with a
damping mechanism (called a dashpot) with damping factor b.

Solution
The spring force acting on the platform is proportional to the spring extension
(x − ξ). The damping force produced by the dashpot is proportional to the
relative velocity of the platform with respect to the floor, which is given by
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d
dt

(x − ξ). Thus the equation of motion of the platform is

m
d2x

dt2
= −k(x − ξ) − b

d

dt
(x − ξ)

or

d2x

dt2
+ γ

d

dt
(x − ξ) + ω2

o(x − ξ) = 0

where ω2
o = k/m and γ = b/m. To solve this equation we introduce the vari-

able X = x − ξ in place of x, giving the equation

d2X

dt2
+ γ

dX

dt
+ ω2

oX = −d2y

dt2
= ω2A cos ωt

since ξ = A cos ωt . We assume a steady state solution of this equation of the
form X = B(ω) cos(ωt − δ) to obtain

x = ω2A cos(ωt − δ)

[(ω2
o − ω2)2 + ω2γ 2]1/2

+ A cos ωt.

Since x is a superposition of two cosine terms in ωt , we can write it as

x = C(ω) cos(ωt − α),

where

[C(ω)]2 = A2(ω4
o + ω2γ 2)

(ω2
o − ω2)2 + ω2γ 2

.

Thus [
C(ω)

A

]2

= (ω4
o + ω2γ 2)

(ω2
o − ω2)2 + ω2γ 2

= (ω4
o + ω2γ 2)

(ω4
o + ω2γ 2) + ω2(ω2 − 2ω2

o)
.

The maximum value of x is equal to C(ω). Inspection of this expression
shows that the ratio of C(ω) to A depends on the relative sizes of the terms
(ω4

o + ω2γ 2) and ω2(ω2 − 2ω2
o):

(i) C(ω) = A when ω2 = 2ω2
o.

(ii) C(ω) > A when ω2 < 2ω2
o.

(iii) C(ω) < A when ω2 > 2ω2
o.
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We see that the system does attenuate the floor vibrations when ω2 > 2ω2
o. How-

ever, the vibrations of the floor are amplified when ω2 < 2ω2
o. It is thus impor-

tant to make the resonance frequency ωo of the system as low as possible by, for
example, having a platform of large mass. In practical systems, ωo is chosen to
be about 1 Hz. Of course, damping can be used to reduce C(ω) to an acceptable
value. For example, at ω = ωo, C(ω) = A[(ωo/γ )2 + 1]1/2 and increasing the
damping factor γ can be seen to reduce C(ω). Such vibration-isolation sys-
tems find many practical applications, such as in tables to support sensitive
apparatus like lasers.

3.3 POWER ABSORBED DURING FORCED OSCILLATIONS

In Section 3.2.1 we described the application of a periodic driving force to a
mass on the end of a spring, for the ideal situation where there is no damping. The
applied force drives the mass back and forth, but if there is no damping there is
no dissipation of energy. During steady state oscillations, energy must be provided
to stretch or compress the spring but this energy is recovered as the spring returns
to its equilibrium length. Consequently, the total power delivered to the oscillator
over each complete cycle is zero. However, a real oscillator loses energy because
of the frictional damping forces that are invariably present. The driving force has to
restore this lost energy. The power absorbed by the oscillator to sustain its motion
is exactly equal to the rate at which the energy is dissipated . As usual we will
assume that the damping force is proportional to the velocity of the mass and so
we begin by considering how the velocity varies during forced oscillations. The
displacement x of the mass is given by

x = A(ω) cos(ωt − δ) (3.5)

where

A(ω) = aω2
o

[(ω2
o − ω2)2 + ω2γ 2]1/2

, (3.15)

and so the velocity v is given by

v = dx

dt
= −A(ω)ω sin(ωt − δ). (3.21)

We write this as

v = −v0(ω) sin(ωt − δ), (3.22)

where

v0(ω) = A(ω)ω. (3.23)
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We can think of v0(ω) as the ‘amplitude’ of the velocity just as A(ω) is the
amplitude of displacement. Substituting for A(ω) in Equation (3.23) gives

v0(ω) = aω2
oω

[(ω2
o − ω2)2 + ω2γ 2]1/2

. (3.24)

Rewriting (ω2
o − ω2) in Equation (3.24) as

(ω2
o − ω2) =

(
ωo

ω
− ω

ωo

)
(ωoω),

we obtain

v0(ω) = aω2
o[(

ωo

ω
− ω

ωo

)2

ω2
o + γ 2

]1/2 . (3.25)

Inspection of Equation (3.25) shows that

as ω → 0, v0(ω) → 0,

as ω → ∞, v0(ω) → 0,

and the value of v0(ω) passes through a maximum at exactly ω = ωo, when it is
equal to aω2/γ .

The rate of energy loss due to damping is equal to the damping force times
the velocity of the mass, cf. Equation (2.20). Since the damping force and the
velocity are time-dependent, we must define the instantaneous power absorbed at
time t by

P (t) = bv(t) × v(t) = b[v(t)]2.

Substituting v(t) from Equation (3.22) gives

P (t) = b[vo(ω)]2 sin2(ωt − δ). (3.26)

Furthermore, since the instantaneous power varies it is more appropriate to talk
in terms of the average power P (ω) absorbed over a complete cycle of oscil-
lation between times to and to + T , where T is the period. P(ω) is given by

P(ω) = 1

T

∫ to+T

to

P (t)dt . (3.27)

Thus

P (ω) = b[vo(ω)]2

T

∫ to+T

to

sin2(ωt − δ)dt . (3.28)
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The integral of sin2(ωt − δ) over any complete period of oscillation T is equal to
T /2. Hence

P (ω) = b[vo(ω)]2

2
. (3.29)

Substituting Equation (3.24) for v0(ω) and using b = mγ , ω2
o = k/m and a =

F0/k, we obtain

P(ω) = ω2F 2
0 γ

2m[(ω2
o − ω2)2 + ω2γ 2]

. (3.30)

A plot of P (ω) against ω gives the power resonance curve of the oscillator, which
shows how the power absorbed by the oscillator varies with the driving frequency.
An example of such a power resonance curve is shown in Figure 3.7. Inspection
of Equation (3.30) shows that

as ω → 0, P (ω) → 0,

as ω → ∞, P (ω) → 0

and the maximum value of P(ω) occurs exactly when ω = ωo.

(wo − g /2) wo

wfwhh = g

P(w)

Pmax
–

2
Pmax
–

w

–

(wo + g /2)

Figure 3.7 The power resonance curve of a forced oscillator. The full width at half height
ωfwhh is equal to γ .

An important parameter of a power resonance curve is its full width at half height
ωfwhh (see Figure 3.7). This width characterises the sharpness of the response of the
oscillator to an applied force. When the driving frequency is close to the resonance
frequency ωo, i.e. ω ≈ ωo, we can replace ω by ωo everywhere in Equation (3.30)
except in the term (ω2

o − ω2) which is replaced by

(ω2 − ω2
o) = (ωo + ω)(ωo − ω) ≈ 2ωo(−�ω),
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where �ω ≡ ω − ωo. With these approximations, Equation (3.30) leads to our final
expression for the power resonance curve:

P (ω) = F 2
0

2mγ (4�ω2/γ 2 + 1)
. (3.30a)

The maximum value of P (ω) is given by

P max = F 2
0

2mγ
(3.31)

and occurs when �ω = 0, i.e. exactly at ω = ωo. The half heights of the curve,
equal to P max/2, occur when 2�ω/γ = 1, i.e. when 2�ω = γ . Thus the full width
at half height ωfwhh of the resonance curve is given by

ωfwhh = 2�ω = γ = ωo/Q, (3.32a)

where the last step follows from the definition (2.21) of the quality factor Q. We
see that the full width at half height ωfwhh of the resonance curve is given by the
parameter γ . From Equation (3.32a), the quality factor can be written

Q = ωo

γ
= ωo

ωfwhh
= resonance frequency

full width at half height of power curve
. (3.32b)

This relationship offers a convenient way to measure the quality factor of an oscil-
lator. Using the relationship γ = ωo/Q, we can rewrite Equation (3.30a) as

P(ω) = F 2
0

2mωoQ[4(�ω/ωo)2 + 1/Q2]
. (3.30b)

Power resonance curves for various values of the quality factor Q are presented
in Figure 3.8. We see that the higher the value of Q the narrower is the power

wo

Q = 10

Q = 5

Q = 2.5

w

P(w)
–

Figure 3.8 Power resonance curves for various values of the quality factor Q.



64 Forced Oscillations

resonance curve. Moreover, the curves are symmetric about their maxima except
for low Q values.

Power resonance curves are common in physical situations. Apart from mechan-
ical and electrical systems, they show up, for example, in atomic and nuclear
physics. When an atom is bathed in radiation it may under certain circumstances
absorb this radiation. In a classical picture, the oscillating electric field of the radia-
tion interacts with the atom which behaves like a forced oscillator. As for any oscil-
lator of high Q, the atom will only absorb energy over a narrow range of frequencies
close to the resonance frequency. This results in a spectral peak in the absorption
spectrum of the atom where the peak corresponds to a power resonance curve.

Worked example

A spectral peak in the absorption spectrum of an atom occurs at a wavelength
of 550 nm and has a measured width of 1.2 × 10−5 nm. Deduce the lifetime
of the excited atom.

Solution
Q = ωo/γ = ωo/ωfwhh, where here ωfwhh is the frequency width of the spectral
peak. Then the lifetime of the excited state is given by 1/γ = 1/ωfwhh. We are
given the width in terms of wavelength λ, where ω = 2πc/λ. Since dω =
−2πcdλ/λ2,

ωfwhh � 2πcλfwhh

λ2

where λfwhh is the width of the spectral peak in wavelength. Therefore the
lifetime of the excited state is equal to

λ2

2πcλfwhh
= (550 × 10−9)2

2π × 3 × 108 × 1.2 × 10−14
= 1.3 × 10−8 s.

This is the basis of an experimental technique to measure atomic lifetimes. It
requires very high photon resolution to determine the widths of the spectral
peaks. In practice there are other effects which broaden spectral peaks such as
Doppler broadening due to the finite velocity of the atoms, and these need to
be taken into account.

3.4 RESONANCE IN ELECTRICAL CIRCUITS

The phenomenon of resonance is also of great importance in electrical cir-
cuits. An example of a resonance circuit is shown in Figure 3.9. It consists of an
inductor L, a capacitor C and a resistor R connected in series, which are driven
by an alternative (AC) voltage, V (t) = V0 cos ωt . Since there is resistance in the
circuit we are dealing with forced oscillations with damping. Applying Kirchoff’s
law to the circuit gives the equation
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L

R

CV(t) = V0 cos wt

Figure 3.9 An LCR resonance circuit that is driven by an alternating voltage V0 cos ωt .

L
d2q

dt2
+ R

dq

dt
+ q

C
= V0 cos ωt. (3.33)

Comparing this with

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos ωt, (3.9)

we see that the alternating voltage, V0 cos ωt , plays the role of the driving force
F0 cos ωt , and that m, b and k for the mechanical system are replaced by L, R and
1/C for the electrical system. Corresponding replacements in Equations (2.4) and
(2.21) give

ω2
o = 1

LC
, γ = R

L
, Q = ωo

γ
= 1

R

√
L

C
, (3.34)

in agreement with our earlier result (2.30). Similarly from the solution, Equations
(3.5) and (3.18), of Equation (3.9), it follows that the solution of Equation (3.33) is

q = q0(ω) cos(ωt − δ) (3.35)

where

q0(ω) = V0/L

[(ω2
o − ω2)2 + (Rω/L)2]1/2

= V0

ω[(1/ωC − ωL)2 + R2]1/2
(3.36)

where we have used ω2
o = 1/LC. The current I flowing in the circuit is given by

I = dq

dt
= −q0(ω)ω sin(ωt − δ)

= −V0 sin(ωt − δ)

[(1/ωC − ωL)2 + R2]1/2
. (3.37)



66 Forced Oscillations

The maximum current amplitude in the circuit will occur when ω2 = ω2
o, i.e. at the

resonance frequency and has the value V0/R.
An important application of electrical resonance is found in radio receivers.

Equation (3.36) shows how the charge varies with time in a resonance circuit.
The resultant alternating voltage VC across the capacitor is equal to q/C. Hence,
substituting Equations (3.35) and (3.36) for q(t), we obtain

VC = VC(ω) cos(ωt − δ),

where

VC(ω) = V0/LC

[(ω2
o − ω2)2 + (Rω/L)2]1/2

. (3.38)

At resonance when ω = ωo, we have

VC(ωo) = V0

RωoC
= QV0.

We see that the resonance circuit has amplified the AC voltage applied to the circuit
by the Q-value of the circuit. A typical value of Q might be 200. Moreover, the cir-
cuit has been selective in amplifying only those frequencies close to the resonance
frequency of the circuit. This makes the circuit ideal for selecting a radio station and
amplifying the oscillating radio signal. Figure 3.10 shows a schematic diagram of
the input stage of a radio receiver employing an LCR resonance circuit. The variable
capacitor in Figure 3.10 allows the circuit to be tuned to different radio stations.

L

R

C
variable
capacitor

amplified
RF signal

aerial

earth

Figure 3.10 A schematic diagram of the input stage of a radio receiver containing an LCR
resonance circuit. This circuit amplifies the incoming radio signal by a factor equal to the
quality factor Q of the circuit. Moreover it amplifies the signal over a narrow range of
frequencies which is again determined by the value of Q.

3.5 TRANSIENT PHENOMENA

Our discussion so far has emphasised that the oscillation frequency of a forced
oscillator is the same as the frequency ω of the applied driving force. As indicated
at the beginning of this chapter, this is not the whole story. When the driving
force is first applied and the system is disturbed from its equilibrium position the
system will be inclined to oscillate at the frequency of its free oscillations. For
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the case of light damping, this is essentially the natural frequency ωo. During this
initial period we thus have the sum of two oscillations of frequencies ω and ωo,
respectively. However, as in the case of damped free oscillations (see Section 2.2.1),
the oscillations of frequency ωo die away. The rate at which they do this depends
on the degree of damping. The system is then left oscillating at the frequency of
the applied force and this is the steady state condition. The initial behaviour of the
oscillator, before it settles down to the steady state, is referred to as its transient
response. We can see this mathematically as follows. The equation for damped
forced oscillations is

d2x

dt2
+ γ

dx

dt
+ ω2

ox = F0

m
cos ωt. (3.10)

If x1 is a solution of this equation then

d2x1

dt2
+ γ

dx1

dt
+ ω2

ox1 = F0

m
cos ωt.

The equation for damped free oscillations is

d2x

dt2
+ γ

dx

dt
+ ω2

ox = 0. (2.5)

If x2 is a solution of this equation then

d2x2

dt2
+ γ

dx2

dt
+ ω2

ox2 = 0.

Hence

d2(x1 + x2)

dt2
+ γ

d(x1 + x2)

dt
+ ω2

o(x1 + x2) = F0

m
cos ωt

and so (x1 + x2) is also a solution of Equation (3.10). If for x1 and x2 in Equations
(3.10) and (2.5) we take the solutions given by Equations (3.5) and (2.7), respec-
tively, we obtain as the general solution of Equation (3.10)

x = x1 + x2 = A(ω) cos(ωt − δ) + B exp(−γ t/2) cos[(ω2
o − γ 2/4)1/2t + φ]

(3.39)

t

x

Figure 3.11 An example of the transient response of a forced oscillator. Eventually the
oscillations settle down to the steady state condition.
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for the case of light damping. The amplitude A(ω) and the phase angle δ are both
functions of driving frequency ω, see Equations (3.13–3.15), and the constants
B and φ are determined by the initial conditions, as usual. An example of forced
oscillations that start at time t = 0 is shown in Figure 3.11. After an initial transient
response, the system settles down to its steady state condition. Analogous effects
occur in AC circuits. When the AC voltage is first applied to the circuit there will
be a transient response. This may produce dangerously high voltages and currents,
which require special provision in engineering design.

3.6 THE COMPLEX REPRESENTATION OF OSCILLATORY MOTION

Oscillatory motion can also be described using complex numbers. This provides
an elegant and concise representation and has important advantages, as we shall see.
We start by summarising the relevant mathematical aspects of complex numbers
in Section 3.6.1. In Section 3.6.2 we describe how complex numbers are used to
represent physical quantities and in Section 3.6.3 we apply complex numbers to
the case of forced oscillations with damping.

3.6.1 Complex numbers

A complex number, which is often denoted by z, can be written

z = x + iy (3.40)

where x and y are real numbers (i.e. ordinary numbers as we have used so far),
while i is defined as the square root of −1:

i = √−1. (3.41)

i is called an imaginary number because the square of no real number equals minus
one. It follows at once that

i2 = −1. (3.42)

We see that a complex number z has two components; a real part x and an imaginary
part y, often denoted, respectively, by

x = Re(z), y = Im(z). (3.43)

Complex numbers are an extension of real numbers and the rules of operating with
them are exactly the same as those for real numbers plus the proviso that i2 = −1.
For example if z1 and z2 are two complex numbers

z1 = x1 + iy1, z2 = x2 + iy2, (3.44)

then addition, subtraction and multiplication are given, respectively, by

z1 ± z2 = (x1 + iy1) ± (x2 + iy2) = (x1 ± x2) + i(y1 ± y2) (3.45)
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and

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). (3.46)

The equation z1 = z2 means x1 = x2 and y1 = y2, i.e. the real parts of z1 and z2

are equal and so are the imaginary parts. In particular, z = x + iy = 0 means that
x = 0 and y = 0. (We can think of the right-hand side of x + iy = 0 as standing
for 0 + i0.)

A frequently useful quantity of a complex number is its complex conjugate,
which is denoted by an asterisk. It is obtained by changing i to −i throughout.
Thus the complex conjugate of z = x + iy is

z∗ = x − iy (3.47)

and the complex conjugate of z2 is

(z2)∗ = [(x2 − y2) + i2xy]∗ = (x2 − y2) − i2xy.

Using the complex conjugate, it is straightforward to obtain division of complex
numbers. To find z1/z2 we multiply both the numerator and denominator by the
complex conjugate of z2:

z1

z2
= z1z

∗
2

z2z
∗
2

= (x1 + iy1)(x2 − iy2)

x2
2 + y2

2

= (x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y2

2

. (3.48)

The frequently occurring quantity zz∗, i.e. the product of a complex number with
its complex conjugate

zz∗ = x2 + y2 (3.49)

is seen to be real and positive and is denoted by

zz∗ = |z|2. (3.50)

The real positive quantity |z| = √
zz∗ is called the modulus of z.

The above summarises the basic rules for manipulating complex numbers. Their
meaning is brought out by their geometrical interpretation. We can interpret the
components (x, y) of the complex number z = x + iy as the coordinates of a point
P in a rectangular Cartesian coordinate system (Figure 3.12). The point P is
then specified by the Cartesian coordinates (x, y) or equivalently by the complex
number z. The x- and y-axes are called the real and imaginary axes and the whole
x-y plane the complex z-plane. Figure 3.12 is referred to as the Argand diagram
of z. From Figure 3.12 we see that the distance OP =

√
(x2 + y2) is just the
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Figure 3.12 The complex plane containing the complex number z.

modulus of z. The angle θ is the angle that the line OP makes with the positive x

direction, measured in the anticlockwise sense, and is given by

cos θ = x√
(x2 + y2)

, sin θ = y√
(x2 + y2)

. (3.51)

Figure 3.12 and these relations suggest the introduction of polar coordinates

x = r cos θ, y = r sin θ (3.52)

with r being the distance OP :

r =
√

(x2 + y2). (3.53)

The real breakthrough comes through employing the important relation due to
Euler1

eiθ = cos θ + i sin θ (3.54)

It follows from this relation and Equations (3.40) and (3.51) that

z = x + iy = r(cos θ + i sin θ) = reiθ . (3.55)

The polar coordinate r is the modulus |z| of the complex number z and θ is called
the argument of z. If we multiply reiθ by eiφ we obtain

z′ = zeiφ = rei(θ+φ). (3.56)

In the Argand diagram, Figure 3.13, this corresponds to rotating the line OP through
an angle φ in the anticlockwise direction to the new position OP ′. If φ = π/2 the
line is rotated through π/2. However,

eiπ/2 = cos(π/2) + i sin(π/2) = i.

1 A formal verification of this relation is afforded by substituting the power series expansions for cos θ

and sin θ in Equation (3.54). In this way, one obtains the power series expansion of the exponential
function eiθ .
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Figure 3.13 Multiplication of the complex number z by the factor eiφ .

Thus multiplying a complex number by eiπ/2 is equivalent to multiplying the
number by i. Similarly multiplying a complex number by eiπ is equivalent to
multiplying the number by −1. If θ varies with time as θ = (ωt + φ) then the line
OP rotates in the complex plane with angular frequency ω in the anticlockwise
direction. As the expression x = A cos θ contains both amplitude and angular (or
phase) information, so reiθ also contains these two kinds of information; amplitude
information is given by r and phase information is given by θ .

3.6.2 The use of complex numbers to represent physical quantities

The essential idea is that we represent physical quantities such as displacement,
velocity and acceleration by the real part of a complex number z. We will illustrate
this by considering the motion of a simple harmonic oscillator. The complex form
of the equation of SHM is

d2z

dt2
= −ω2z, (3.57)

where z = x + iy . Since x and y are real quantities, taking the real part of this
equation, at once gives

d2x

dt2
= −ω2x, (1.6)

which is our result from Section 1.2.1. From the solution z of the complex equation
(Equation (3.57)) we can take the real part of z to obtain x which is the physically
significant quantity.2 Obtaining a solution of Equation (3.57) in terms of the polar
coordinate form reiθ , rather than the equivalent form z = x + iy , simplifies the

2 It should be noted that this procedure of solving a differential equation for a complex variable z,
instead of for a real variable x, only works if the equation is linear, i.e. each term in the equation
is either independent of z or depends on z or one of its derivatives dz/dt , d2z/dt2, . . . in first order
only. For example, if the right-hand side of Equation (3.57) is replaced by −ω2z2, then Re(−ω2z2) =
−ω2(x2 − y2), and taking real parts of the modified equation would lead to d2x/dt2 = −ω2(x2 − y2)

and not to d2x/dt2 = −ω2x2, the equation we are trying to solve.



72 Forced Oscillations

analysis and brings out the physical meaning more clearly. Taking for z the polar
coordinate form,

z = Aei(ωt+φ), (3.58)

then

dz

dt
= iωAei(ωt+φ) = iωz (3.59)

and

d2z

dt2
= d

dt
(iωz) = −ω2z, (3.60)

showing that z = Aei(ωt+φ) is indeed a solution of the SHM equation (3.57). Taking
the real parts of Equations (3.58), (3.59) and (3.60) at once gives

x = Re(z) = A cos(ωt + φ),

dx

dt
= Re(iωz) = Re[iω(x + iy)] = −ωy = −ωA sin(ωt + φ)

and

d2x

dt2
= Re (−ω2z) = −ω2A cos(ωt + φ).

These are our familiar results for the displacement, velocity and acceleration of a
simple harmonic oscillator, cf. Equations (1.11), (1.12) and (1.13).

The geometrical interpretation of complex numbers also provides a representation
of physical quantities. Figure 3.14(a) shows z = Aei(ωt+φ) in the complex z-plane.
The length of the line OP corresponds to A, the amplitude of the motion, and
this line rotates anticlockwise in the complex plane with angular frequency ω. The
phase angle φ is the angle that the line OP makes with the horizontal axis at
time t = 0. The projection of OP onto the real axis is equal to A cos(ωt + φ) and
corresponds to the physical quantity of displacement x. If we plot this projection
as a function of time we obtain the familiar periodic variation of x as shown, for
example, in Figure 1.7. Since i = eiπ/2, Equation (3.59) can be written

dz

dt
= ωAei(ωt+φ+π/2). (3.59a)

Figure 3.14(b) shows dz/dt in the complex plane at point P ′. Equation (3.59a)
shows that the length of the line OP ′ is ωA and lies at an angle of π/2 with
respect to the line OP . The physical significance of this is that the velocity in
SHM leads the displacement by π/2, as we saw in Section 1.2.3. The projection
of OP ′ on the real axis is equal to ωA cos(ωt + φ + π/2) and gives the value of
the velocity at time t . Writing Equation (3.60) as



The Complex Representation of Oscillatory Motion 73

(a)

(b)

(c)

x

A
wt + f

ω

ω

P

x = Acos(wt + f)

O

y

x
w

A

P′

O

y

wt + f + π
2

x = wAcos(wt + f + π
2
)

x

P''

O

y

wt + f + π
x = w2Acos(wt + f + π)

w

w2A

Figure 3.14 Representation of (a) displacement, (b) velocity and (c) acceleration in their
respective complex planes. The three lines OP , OP ′ and OP ′′ rotate with angular frequency
ω maintaining constant phase differences between them.

d2z

dt2
= ω2Aei(ωt+φ+π), (3.60a)

it follows that the acceleration leads the velocity by π/2 and leads the displace-
ment by π. The acceleration, given by the projection of OP ′′ on the real axis,
Figure 3.14(c), is equal to ω2A cos(ωt + φ + π). The complete picture, then, is of
three lines OP , OP ′ and OP ′′ rotating anticlockwise at angular frequency ω and
maintaining constant relative phases, with their projections on the real axes giving
the values of displacement, velocity and acceleration, respectively, as functions
of t . This analysis also demonstrates that the mathematical operation of differenti-
ation with respect to time has been replaced by multiplication by iω. This makes
the mathematical manipulation of complex variables much easier than for functions
containing sines and cosines.
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3.6.3 Use of the complex representation for forced oscillations with damping

The equation for forced oscillations with damping is

d2x

dt2
+ γ

dx

dt
+ ω2

ox = F0

m
cos ωt. (3.10)

In Section 3.2.2 we solved this equation by assuming a solution of the form x =
A(ω) cos(ωt − δ) and determined the behaviour of A(ω) and δ as functions of
ω. In the complex representation we have the corresponding complex differential
equation

d2z

dt2
+ γ

dz

dt
+ ω2

oz = F0

m
eiωt . (3.61)

We note that Equation (3.10) is the real part of Equation (3.61). In particular
(F0/m) cos ωt is the real part of (F0/m)eiωt . We assume a solution of the form
z = A(ω)ei(ωt−δ) and substitute this in Equation (3.61) giving

[−ω2A(ω) + iγ ωA(ω) + ω2
oA(ω)]ei(ωt−δ) = F0

m
eiωt .

Dividing through by ei(ωt−δ) we obtain

(ω2
o − ω2)A(ω) + iγ ωA(ω) = F0

m
eiδ. (3.62)

Taking real and imaginary parts of this equation gives

(ω2
o − ω2)A(ω) = F0

m
cos δ

and

γωA(ω) = F0

m
sin δ

from which we readily obtain

tan δ = γω

(ω2
o − ω2)

(3.12)

and

A(ω) = F0/m

[(ω2
o − ω2)2 + ω2γ 2]1/2

. (3.18)

These are the same results we obtained in Section 3.2.2 using sines and cosines.
However, these results have been obtained more readily using the complex repre-
sentation.

PROBLEMS 3

3.1 A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of
spring constant 12 N m−1. The other end of the spring is attached to a rigid support.
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The mass is subjected to a harmonic driving force F = F0 cos ωt , where F0 = 0.15 N
and a damping force Fd = −bv, where b = 0.06 kg s−1. Determine the amplitude of
oscillation and the phase angle between the driving force and the displacement of the
mass for steady-state oscillations at frequencies of (a) 2 rad s−1, (b) 20 rad s−1 and
(c) 100 rad s−1.

3.2 A damped harmonic oscillator, driven by a force F0 cos ωt , vibrates with an amplitude
A(ω) given by

A(ω) = aωo/ω

[(ωo/ω − ω/ωo)2 + 1/Q2]1/2

where a is the amplitude as ω → 0, ωo is the natural frequency of oscillation and Q
is the quality factor. Show that the amplitude A(ω) is a maximum for a frequency

ωmax = ωo(1 − 1/2Q2)1/2

and that at ωmax the amplitude is equal to

aQ

(1 − 1/4Q2)1/2
.

(Hint: Let ωo/ω = u, divide the denominator and numerator by u and investigate the
resulting expression inside the square root.)

3.3 For a value of Q = 10 in Problem 3.2, find (a) the percentage difference between the
natural frequency of oscillation ωo and the frequency ωmax at which the maximum
amplitude of oscillation would occur and (b) the percentage difference between the
amplitudes at these two frequencies.

3.4 A driven oscillator has a natural frequency ωo of 100 rad s−1, a Q-value of 25 and an
average input power P max at resonance of 50 W. Plot the power resonance curve of
the oscillator over the frequency range 92 to 108 rad s−1.

3.5 A series LCR circuit (cf. Figure 3.9) has C = 8.0 × 10−6 F, L = 2.0 × 10−2 H and
R = 75 � and is driven by a voltage V (t) = 15 cos ωt V. Determine (a) the resonance
frequency (Hz) of the circuit and (b) the amplitude of the current at this frequency.

3.6 Determine the numerical value of ii where i = √−1.

3.7 The displacement x of a simple harmonic oscillator is given by the real part of the
complex number z = Aei(ωt+φ). Derive the phase difference between x and dx/dt , and
say which of these is in advance of the other.

3.8 A simple pendulum consists of a mass m attached to a light string of length l. When
at rest it lies in a vertical line at x = 0. The pendulum is driven by moving its point
of suspension harmonically in the horizontal direction as ξ = a cos ωt about its rest
position (x = 0). There is a damping force Fd = −bv due to friction as the mass
moves through the air with velocity v. (a) Show that the horizontal displacement x
of the mass, with respect to its equilibrium position (x = 0), is the real part of the
complex quantity z where

m
d2z

dt2
+ b

dz

dt
+ mω2

oz = mω2
oaeiωt

and ω2
o = g/l. (b) Assuming a solution of the form z = Aei(ωt−δ), show that the phase

angle δ between the driving force and the displacement of the mass is given by

tan δ = γω

ω2
o − ω2
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where γ = b/m and that the amplitude is given by

A(ω) = a
ω2

o

[(ω2
o − ω2)2 + ω2γ 2]1/2

.

3.9 When the pendulum in Problem 3.8 is vibrating freely in unforced oscillation, the
amplitude of its swing decreases by a factor of e after 75 cycles of oscillation. (a)
Determine the Q-value of the pendulum. (b) The point of suspension of the pendulum
is moved according to ξ = a cos ωt at the resonance frequency ωo with a = 0.5 mm.
What will be the amplitude of swing of the pendulum? (c) Show that the width of
the amplitude resonance curve at half height is equal to γ

√
3 and determine its value

if the length of the pendulum is 1.5 m. (Assume g = 9.81 m s−2.) (Hint: Follow the
approach of Section 3.3 that was used to determine the frequencies at which the half
heights of a power resonance curve occur.)

3.10 The equation of motion of a forced harmonic oscillator with damping is given by

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos ωt.

Assuming a solution x = A(ω) cos(ωt − δ):

(a) Give expressions for (i) the instantaneous kinetic energy K , (ii) the instantaneous
potential energy U and (iii) the instantaneous total energy E of the oscillator.

(b) For what value of ω is the total energy constant with respect to time? What is the
total energy of the oscillator at this frequency?

(c) Obtain an expression for the ratio of the average kinetic energy K to the average
total energy E of the oscillator in terms of the dimensionless quantity ωo/ω. Sketch
this expression over an appropriate range of ω. For what value of ω are the average
values of the kinetic and potential energies equal?

(d) Show that the average total energy of the oscillator varies with angular frequency
ω according to

E(ω) = F 2
o (ω2

o + ω2)

4m[(ω2
o − ω2)2 + ω2b2/m2]

.

3.11 .(a) For a driven oscillator show that the energy dissipated per cycle by a frictional
force Fd = −bv at frequency ω and amplitude A is equal to πbωA2.

(b) Hence show

energy dissipated/cycle

stored energy
= 2πb

mω
.

(c) Show that at the resonance frequency of a lightly damped oscillator

energy dissipated/cycle

stored energy
= 2π

Q

where Q is the quality factor.

3.12 The pendulum of a clock consists of a mass of 0.20 kg hanging from a thin rod. The
amplitude of the pendulum swing is 3.0 cm. The clock is driven by a weight of mass
4.5 kg that falls a distance of 0.95 m over a period of 8 days. Assuming the pendulum
to be a simple pendulum of length 0.75 m, show that the Q-value of the clock is
approximately 70.
(Assume g = 9.81 m s−2.)



4
Coupled Oscillators

So far we have considered simple harmonic oscillators such as a mass on a spring
or a simple pendulum that have only one way of oscillating. These are characterised
by a single natural frequency of oscillation. In this chapter we consider systems
that consist of two (or more) oscillators that are coupled together in some way and
that have more than one frequency of oscillation. We will see that this coupling
produces new and important physical effects. Each of the frequencies relates to a
different way in which the system can oscillate. These different ways are called
normal modes and the associated frequencies are called normal frequencies . The
normal modes of a system are characterised by the fact that all parts of the system
oscillate with the same frequency. Coupled motion is important because oscillators
rarely exist in complete isolation and real physical systems are usually capable of
oscillating in many different ways. For example a noisy old car will have many
coupled components that may be heard vibrating and rattling when the engine is
running! At the microscopic level, vibrating atoms in a crystal provide an example
of coupled oscillators. Coupled oscillators are also important because they pave
the way to the understanding of waves in continuous media like taut strings. Wave
motion depends on neighbouring vibrating systems that are coupled together and
so can transmit their energy from one to another.

4.1 PHYSICAL CHARACTERISTICS OF COUPLED OSCILLATORS

We can see the main physical characteristics of coupled oscillators by observing
the motion of two simple pendulums that are coupled together. They can be coupled
by attaching their points of suspension to a supporting string as shown in Figure 4.1.
This is a simple experiment that is well worth doing. Both pendulums have the
same length l and so their periods of oscillation are equal. The supporting string
provides the coupling between the two pendulums. As each pendulum oscillates
it pulls on the supporting string and causes the point of suspension of the other

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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supporting string

l l

Figure 4.1 Two simple pendulums of length l coupled together by a supporting string. The
displacements of the two pendulum masses are considered in the direction perpendicular to
the plane of the page.

pendulum to be driven back and forth. The motion of each pendulum affects the
other and so their motions cannot be considered in isolation. We consider the motion
of the two pendulums in the direction at right angles to the plane of the page. (i)
First we displace both pendulum masses by the same amount and in the same
direction. When released we observe that the two masses move back and forth in
the same directions as each other with the same frequency and the same amplitude.
(In this example and for the rest of this chapter we will assume that damping forces
can be neglected.) (ii) Next we displace the two masses by the same amount but
now in opposite directions. When released the two masses move back and forth
in opposite directions. Again they both oscillate with the same frequency as each
other but at a frequency that is slightly different from when they move in the same
directions. These two distinctly different ways of oscillation are the normal modes
of the system. We observe that once the system is put into one or other of these
normal modes it stays in that mode and does not evolve into the other. (iii) Now we
displace just one mass leaving the other at its equilibrium position. When released
the displaced mass moves back and forth but it does so with a steadily decreasing
amplitude. At the same time the mass that was initially at rest starts to oscillate
and gradually the amplitude of its oscillation increases. Eventually the first mass
momentarily stops oscillating having transferred all of its energy to the second mass
that now oscillates with the amplitude initially given to the first mass. This process
then repeats with the amplitude of the second mass steadily decreasing and that of
the first steadily increasing. The cycle continues with the energy repeatedly being
transferred between the two masses. This behaviour seems to be strange at first
sight and indeed is sometimes used by conjurors to mystify their audience; they
might use coconuts as the pendulum masses! However, there is nothing mysterious
about the observations. What we are observing is the superposition of the two
normal modes described above, as we shall see.

4.2 NORMAL MODES OF OSCILLATION

To obtain a mathematical description of coupled oscillations we start again with
a pair of simple pendulums but now the coupling is provided by a light horizontal
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spring that connects them, as shown in Figure 4.2. The spring is at its unstretched
length when the two pendulums are at their equilibrium positions. The mass and
length of each pendulum are m and l, respectively, and the spring constant is k.
Displacements of the two masses from their equilibrium positions are xa and xb,
respectively, and now, in contrast to Section 4.1, we consider oscillations in the
plane of the page.

k
b a

l l

xb xa

Figure 4.2 Two simple pendulums coupled together by a light horizontal spring of spring
constant k. The displacements of the two pendulum masses from their equilibrium positions
are xa and xb, respectively, and these lie in the plane of the page.

Case (i). We first displace each mass in the same direction by an equal amount
as shown in Figure 4.3 and then release them. Since the pendulums have the same
period the spring retains its unstretched length and so plays no role in the motion.
The two pendulums might just as well be unconnected as they both oscillate at the
frequency of a simple pendulum

√
g/l. We can then write the displacements of the

two masses, respectively, as

xa = A cos ω1t, xb = A cos ω1t (4.1)

b a

xb xa

Figure 4.3 The first normal mode of oscillation of the coupled system in which xa = xb.

where A is the initial displacement and ω1 = √
g/l. The phase angles are zero

because the masses start from rest (cf. Section 1.2.4). The variations of xa and xb
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with time are shown in Figure 4.4. The masses oscillate in phase with the same
frequency and amplitude. This is the first normal mode of oscillation.

t

t

A

A
xb

xa

Figure 4.4 Oscillations of the two masses in the first normal mode. These oscillations have
the same frequency and amplitude and are in phase with each other.

Case (ii). We now displace each mass by an equal amount but in opposite
directions, as shown in Figure 4.5, and then release them. As the two pendulums
swing back and forth the spring is alternately stretched and compressed and this
exerts an additional restoring force on the masses. The symmetry of the arrangement
tells us that the motions of the masses will be mirror images of each other, i.e.
xa = −xb. The resultant equation of motion of mass a is then

m
d2xa

d2t
= −mgxa

l
− 2kxa. (4.2)

b

qa

a

xb xa

Figure 4.5 The second normal mode of oscillation of the coupled system in which
xa = −xb.

The first term on the right-hand side of this equation is the usual restoring force
term for a simple pendulum with small amplitude oscillations [see Equation (1.31)
with xa � lθa for small θa]. The second term is the restoring force due to the spring
extension of 2xa. Hence

d2xa

d2t
+ ω2

2xa = 0 (4.3)

where ω2
2 = (g/l + 2k/m). The action of the spring is to increase the restoring force

acting on each mass and this increases the frequency of oscillation, i.e. ω2 > ω1.
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The solution of Equation (4.3) is

xa = B cos ω2t, (4.4)

where B is the initial displacement. Again the phase angle is zero because the mass
started from rest. Since xa = −xb,

xb = −B cos ω2t. (4.5)

The variations of xa and xb with time are shown in Figure 4.6. The masses oscillate
with the same frequency and amplitude but now they are 180◦ out of phase. We
could write xb as xb = B cos(ω2t + π) to emphasise this phase relationship. This
is the second normal mode of oscillation. We see that in each normal mode:

t

t

B

B
xb

xa

Figure 4.6 Oscillations of the two masses in the second normal mode. These oscillations
have the same frequency and amplitude but are in anti-phase, i.e. are 180◦ out of phase with
each other.

• Both the masses oscillate at the same frequency.
• Each of the masses performs SHM with constant amplitude.
• There is a well defined phase difference between the two masses; either zero

or π.
• Once started in a particular normal mode, the system stays in that mode and

does not evolve into the other one.

The importance of normal modes, as we shall see, is that they are entirely inde-
pendent of each other.

4.3 SUPERPOSITION OF NORMAL MODES

In general the motion of a coupled oscillator will be much more complicated
than in cases (i) and (ii) above. Those cases were special in that the motion was
confined to a single normal mode, i.e. either xa = xb or xa = −xb at all times. In
general this is not so. The general case is illustrated in Figure 4.7 which shows
the displacements of the two masses at some instant in time and xa �= ±xb. This
gives a spring extension (xa − xb) and produces a tension T = k(xa − xb) in the
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a
b

xb xa

Figure 4.7 General case for the superposition of normal modes where xa �= ±xb.

spring. The directions of the spring force acting on the masses are as indicated by
the arrow heads on the springs. The restoring force on mass a is

−mgxa

l
− k(xa − xb)

and the restoring force on mass b is

−mgxb

l
+ k(xa − xb).

The resultant equations of motion are

d2xa

dt2
+ gxa

l
+ k

m
(xa − xb) = 0 (4.6)

and

d2xb

dt2
+ gxb

l
− k

m
(xa − xb) = 0. (4.7)

Equations (4.6) and (4.7) each contain both xa and xb. Thus they cannot be solved
separately but must be solved simultaneously. We can do this as follows. Adding
them gives

d2(xa + xb)

dt2
+ g(xa + xb)

l
= 0. (4.8)

It is striking that this is the equation of SHM where the variable is (xa + xb).
Moreover the frequency of oscillation

√
g/l is the frequency ω1 of the first normal

mode. Subtracting Equation (4.7) from Equation (4.6) gives

d2(xa − xb)

dt2
+

(
g

l
+ 2k

m

)
(xa − xb) = 0. (4.9)
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This again is the equation of SHM but now in the variable (xa − xb). Moreover,
the oscillation frequency

√
(g/l + 2k/m) is the same as the frequency ω2 of the

second normal mode. We introduce the new variables q1 and q2 where

q1 = (xa + xb) and q2 = (xa − xb). (4.10)

Then

d2q1

dt2
+ ω2

1q1 = 0 (4.11)

and

d2q2

dt2
+ ω2

2q2 = 0. (4.12)

We now have another description of the normal modes. We have two independent
oscillations in which each normal mode is represented by the oscillation of a single
variable: each of Equations (4.11) and (4.12) involves just one coordinate, q1 or
q2, and describes SHM, with frequencies ω1 and ω2, respectively. These equations
do not involve, for example, a product q1q2: there is no coupling between the two
normal modes. This is in contrast to Equations (4.6) and (4.7) which contain both
position coordinates xa and xb. The terms in those equations involving (xa − xb)

represent the effect that each mass has on the other via the connecting spring. They
couple the oscillations of the two masses: the oscillations are not independent. The
general solutions of Equations (4.11) and (4.12) can be written, respectively,

q1 = C1 cos(ω1t + φ1), q2 = C2 cos(ω2t + φ2), (4.13)

as we know from Section 1.2.4. C1 and C2 are amplitudes and φ1 and φ2 are phase
angles. The variables q1 and q2 are called normal coordinates and ω1 and ω2 are
called normal frequencies . If q1 = 0 then xa = −xb at all times, and if q2 = 0 then
xa = xb at all times. It is useful to describe coupled motion in terms of the normal
coordinates because the resulting equations of motion depend on only one variable,
either q1 or q2, so that they can be considered separately; changes in q1 do not
affect q2 and vice versa. For example, the amplitude and hence energy of each
normal mode remains constant; energy never flows between one normal mode and
another as will be demonstrated shortly.

We can express the displacements of the two masses in terms of the normal
coordinates. Equation (4.10) leads to

xa = 1

2
(q1 + q2) = 1

2
[C1 cos(ω1t + φ1) + C2 cos(ω2t + φ2)] (4.14)

and

xb = 1

2
(q1 − q2) = 1

2
[C1 cos(ω1t + φ1) − C2 cos(ω2t + φ2)]. (4.15)
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We see that the apparently complicated motion of a coupled oscillator (see
Section 4.1) can be broken down into a combination of two independent harmonic
oscillations (normal modes). The variables of these harmonic motions are the
normal coordinates. Equations (4.14) and (4.15) demonstrate that any solution of
Equations (4.6) and (4.7), i.e. any motion of the two masses, can be written as a
superposition of the two normal modes. It follows that there are just two normal
modes for our system. The four constants C1, C2, φ1 and φ2 are determined by
the initial positions and velocities of the two masses, i.e. at time t = 0. If the two
masses are released from rest at t = 0, the appropriate solutions for q1 and q2,
obtained by taking φ1 = φ2 = 0 in Equation (4.13), are

q1 = C1 cos ω1t and q2 = C2 cos ω2t. (4.16)

The independence of the two normal modes is clearly demonstrated if we write
down the energy of the system. In terms of the position coordinates xa and xb the
energy is given by

E = 1

2
m

(
dxa

dt

)2

+ 1

2
m

(
dxb

dt

)2

+ 1

2

mg

l
(x2

a + x2
b) + 1

2
k(xa − xb)

2. (4.17a)

The first two terms in this expression are the kinetic energies of the two masses,
the third term is their potential energies due to gravity [see Equation (1.36)] and
the last term is the energy stored in the spring [see Equation (1.18)]. Expressed in
terms of the normal coordinates q1 and q2 (Equation (4.10)) the energy E becomes

E =
[

1

4
m

(
dq1

dt

)2

+ 1

4

(mg

l

)
q2

1

]
+

[
1

4
m

(
dq2

dt

)2

+ 1

4

(mg

l
+ 2k

)
q2

2

]
.

(4.17b)

This equation represents the energy of two independent simple harmonic oscillators
with frequencies ω1 = √

g/l and ω2 = √
(g/l + 2k/m) (see also the discussion in

Section 1.3.2). Each of the expressions in square brackets in this equation contains
only one of the normal coordinates and represents the energy of a single isolated
harmonic oscillator. There are no ‘cross terms’ involving both q1 and q2, which
would indicate coupling between them. This is in contrast to the energy expressed
in terms of the position coordinates xa and xb (Equation (4.17a)) where the last
term, involving (xa − xb), represents a coupling between the two masses.

Worked example

Consider the system of two identical simple pendulums connected by a light
horizontal spring. Deduce expressions for the displacement of the two masses
in terms of the normal modes of the system for the following sets of initial
conditions, (at t = 0). In all cases the masses are released from rest. (i) xa =
A, xb = A, (ii) xa = A, xb = −A and (iii) xa = A, xb = 0.
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Solution

We have xa = 1
2 (C1 cos ω1t +C2 cos ω2t) and xb = 1

2 (C1 cos ω1t −C2 cos ω2t).

(i) Substituting for xa = A, xb = A at t = 0 gives

A = 1

2
(C1 + C2) and A = 1

2
(C1 − C2).

Hence C1 = 2A and C2 = 0, giving xa = A cos ω1t and xb = A cos ω1t .
We recognise this as the first normal mode with all the motion in this
mode with frequency ω1.

(ii) Substituting for xa = A, xb = −A at t = 0 gives

A = 1

2
(C1 + C2) and − A = 1

2
(C1 − C2).

Hence C1 = 0 and C2 = 2A, giving xa = A cos ω2t and xb = −A cos ω2t .
We recognise this as the second normal mode with all the motion in this
mode with frequency ω2.

(iii) Substituting for xa = A, xb = 0 at t = 0 gives

A = 1

2
(C1 + C2) and 0 = 1

2
(C1 − C2).

Hence C1 = A and C2 = A, giving

xa = 1

2
(A cos ω1t + A cos ω2t) and xb = 1

2
(A cos ω1t − A cos ω2t).

These equations for xa and xb combine equal amounts of the two normal
modes. We can visualise these results in a different way by recasting the
solutions for xa and xb as follows. Recalling the trigonometrical identities:

cos(α ± β) = cos α cos β ∓ sin α sin β,

we obtain

cos(α − β) + cos(α + β) = 2 cos β cos α.

Letting (α − β) = ω1 and (α + β) = ω2 we obtain

α = (ω2 + ω1)

2
and β = (ω2 − ω1)

2
.

Thus

cos ω1t + cos ω2t = 2 cos
(ω2 − ω1)t

2
cos

(ω2 + ω1)t

2
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giving

xa = A cos
(ω2 − ω1)t

2
cos

(ω2 + ω1)t

2
.

This product represents a high frequency oscillation at the mean of the
two normal frequencies whose amplitude is modulated by a low frequency
term at half the difference in frequency. This is completely analogous to
the phenomena of beating that occurs when two sound waves of slightly
different frequency combine (see also Section 8.1.1). The beats that we
hear arise from the low frequency modulation term. In a similar way we
find

xb = A sin
(ω2 − ω1)t

2
sin

(ω2 + ω1)t

2
,

which we can write as

xb = A cos

[
(ω2 − ω1)t

2
− π

2

]
cos

[
(ω2 + ω1)t

2
− π

2

]
.

Again we have a high frequency oscillation modulated by a low frequency
term. We see, however, that both cosine terms in the expression for xb

are exactly π/2 out of phase with respect to the corresponding terms for
xa. The variations of xa and xb with time are plotted in Figure 4.8. These
results explain the behaviour of the two coupled pendulums in Section 4.1,
where one pendulum was given an initial displacement and the other was
initially at its equilibrium position. The important point in all of these
examples, with different initial conditions, is that the subsequent motion
is always a superposition of the normal modes.

t

t

A

A
xb

xa

Figure 4.8 Oscillations of the coupled pendulums which, occur when one mass was
initially (t = 0) at xa = A and the other at xb = 0.
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4.4 OSCILLATING MASSES COUPLED BY SPRINGS

We now consider the case of oscillating masses coupled together by springs.
Figure 4.9 shows two identical but independent mass-spring oscillators with mass
m and spring constant k attached to two rigid walls, cf. Figure 1.1. The two
oscillators are coupled together by a third spring also of spring constant k as
shown in Figure 4.10. This third spring provides the coupling so that the motion
of one mass influences the motion of the other. This coupled system has two
normal modes of oscillation. We wish to determine the two frequencies at which
the system will oscillate, i.e. the normal frequencies and the relative displacements
of the masses in the two normal modes. We could exploit the symmetry of the
system to spot the two normal modes as we did in Section 4.2 for the coupled
pendulums. Our physical intuition would suggest that the normal modes would be
(i) where both masses move in the same direction and (ii) where they move in
opposite directions. These two modes are indicated by the arrows in Figure 4.10.
We might also expect that mode (ii) would have the higher frequency of oscillation
since all three springs are having an effect rather than just two as in mode (i).
Instead of spotting the normal modes we adopt a more general approach where we
make use of the characteristics of normal modes, namely that in a normal mode
all of the masses oscillate at the same frequency and each mass performs SHM
with constant amplitude. For the sake of simplicity we will assume that the two
masses are initially at rest, i.e. they have zero velocity at t = 0. Figure 4.11 shows

m m

k k

Figure 4.9 Two uncoupled mass-spring oscillators.

}

}

k

m m

k k

Figure 4.10 Two mass-spring oscillators coupled together by a third spring. The arrows
indicate the directions of the displacements of the two masses expected in the two normal
modes.

a b

equilibrium positions

xa xb

Figure 4.11 Two mass-spring oscillators coupled together by a third spring. The masses
are at arbitrary displacements, xa and xb, respectively, from their equilibrium positions.
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the two masses a and b displaced by arbitrary values xa and xb, respectively, from
their equilibrium positions at some instant in time. In order to see more easily the
directions of the forces acting on the masses we let xb > xa. The left-hand spring
is extended by xa, the middle spring is stretched by (xb − xa) and the right-hand
spring is compressed by xb. The directions of the resultant forces on the masses
are shown by the directions of the arrow heads. To obtain the equation of motion
for each mass we need to consider only the forces exerted by the springs on either
side of the mass. The resultant equations of motion are

m
d2xa

dt2
= −kxa + k(xb − xa) = kxb − 2kxa (4.18)

and

m
d2xb

dt2
= −k(xb − xa) − kxb = kxa − 2kxb. (4.19)

We are looking for normal mode solutions of these equations, where both masses
oscillate at the same frequency ω, i.e. solutions of the form xa = A cos ωt and
xb = B cos ωt . Substituting for xa in Equation (4.18) yields

−Amω2 cos ωt = kB cos ωt − 2kA cos ωt,

giving
A

B
= k

(2k − mω2)
. (4.20)

Substituting for xb in Equation (4.19) yields

−Bmω2 cos ωt = kA cos ωt − 2kB cos ωt,

giving
A

B
= (2k − mω2)

k
. (4.21)

So long as A and B are not both zero, the right-hand sides of Equations (4.21) and
(4.22) must be equal, i.e. we require

A

B
= (2k − mω2)

k
= k

(2k − mω2)
. (4.22)

Multiplying across leads to

(2k − mω2)2 = k2. (4.23)

This is a quadratic equation in ω2 which is seen at once to have the solutions
(2k − mω2) = ±k, i.e. ω2 = k/m or 3k/m. These are the two normal frequencies
of the coupled system. Putting ω2 = k/m in Equation (4.20) gives A = B. This is
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the first normal mode in which the two masses move in the same direction as each
other and with the same amplitude. Then

xa = A cos ω1t, xb = A cos ω1t, (4.24)

where ω2
1 = k/m. Putting ω2 = 3k/m in Equation (4.20) gives A = −B. This is

the second normal mode where the minus sign tells us that the masses move in
opposite directions. Thus

xa = A cos ω2t, xb = −A cos ω2t, (4.25)

where ω2
2 = 3k/m. All of these results are in agreement with our physical intuition.

Since most coupled oscillators do not have a symmetry that allows us to spot the
normal modes, the approach described here is normally essential. As usual the
general motion will be a superposition of the two normal modes, i.e.

xa = C1 cos ω1t + C2 cos ω2t

and

xb = C1 cos ω1t − C2 cos ω2t.

If the masses did not have zero velocity at t = 0, we would also need to include
phase angles as in Equations (4.14) and (4.15).

Worked example

Figure 4.12 shows two equal masses of mass m suspended from two identical
springs of spring constant k. Determine the normal frequencies of this system

a

b

xb

xa

k

k

Figure 4.12 Two equal masses m suspended from two identical springs of spring
constant k. The displacements of the two masses from their equilibrium positions are
xa and xb respectively, measured in the downward direction.
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for vertical oscillations and the ratios of the amplitudes of oscillation of the
masses at these frequencies.

Solution
Let xa and xb be arbitrary displacements of the masses from their respective
equilibrium positions and let xb be greater than xa. Then the extensions of the
upper and lower springs are xa and (xb − xa), respectively, and the directions
of the forces acting upon the two masses are as indicated by the arrow heads.
The resultant equations of motion are

m
d2xa

dt2
= −kxa + k(xb − xa) = k(xb − 2xa)

and

m
d2xb

dt2
= −k(xb − xa).

This time we try complex solutions of the form, xa = Aeiωt and xb = Beiωt .
Substituting for xa and xb into the equations of motion and dividing through
by eiωt leads to

A(2k − mω2) = Bk (4.26a)

and

Ak = B(k − mω2). (4.26b)

Equation (4.26) leads to the quadratic equation (mω2)2 − 3kmω2 + k2 = 0,
which has the solutions ω2 = (k/2m)(3 ± √

5), giving the two normal
frequencies. Substituting for ω2 = (k/2m)(3 − √

5) in Equation (4.26a) gives
A/B = 1/2(

√
5 − 1), while substituting for ω2 = (k/2m)(3 + √

5) gives
A/B = −1/2(

√
5 + 1) where the minus sign indicates that the masses move

in opposite directions, i.e. in anti-phase.

A powerful way to handle the simultaneous equations that arise for coupled
oscillators is to use a matrix representation.1 This works as follows for the example
above. Equation (4.26) can be written, respectively, as

2k

m
A − k

m
B = ω2A, (4.27a)

1 This matrix approach can be omitted by the reader without detriment, although it is extremely powerful
in more complicated cases.
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and

− k

m
A + k

m
B = ω2B. (4.27b)

In matrix form these equations become


2k

m
, − k

m

− k

m
,

k

m







A

B


 = ω2




A

B


 . (4.28)

This is an eigenvalue equation. The solutions of this equation for ω2 are called the
eigenvalues . The column vector with components A and B is an eigenvector of
the matrix. We can rewrite Equation (4.28) in the following form


(

2k

m
− ω2

)
, − k

m

− k

m
,

(
k

m
− ω2

)






A

B


 = 0. (4.29)

This equation has non-zero solutions if and only if the determinant vanishes, i.e. if

(
2k

m
− ω2

) (
k

m
− ω2

)
−

(
k

m

)2

= 0,

giving m2ω4 − 3kmω2 + k2 = 0 and the solutions ω2 = (k/2m)(3 ± √
5) as

before. Substituting for these solutions in Equation (4.28) yields the two values
of A/B. The power of this approach is not obvious for the case of two coupled
oscillators but it quickly becomes apparent when more than two are involved.

In this section we have discussed the example of two masses connected by
springs where the masses oscillate in one dimension, i.e. along the x-axis. We
found that this system has two normal modes of oscillation and that each mode has
an associated normal coordinate q and normal angular frequency ω. These results
can be generalised to N masses interconnected by springs and moving in three
dimensions. As for the case of two masses the N masses do not move indepen-
dently. When one mass is set oscillating the other masses will feel the disturbance
and will start to oscillate. For N coupled masses there are 3N normal modes of
oscillation where the factor of 3 corresponds to the three perpendicular directions
along which each mass can move. Again each normal mode has a normal coor-
dinate and normal frequency, so that we have normal coordinates q1, q2, . . . , q3N

with corresponding normal frequencies ω1, ω2, . . . , ω3N . For each normal mode
we have independent SHM in the coordinate q with frequency ω. A good example
of this is provided by a crystal lattice. In Section 1.2.6 we described how an atom
in a crystal can be modelled as a simple harmonic oscillator and how Einstein
used this model to explain the variation of the specific heat of a crystal with
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temperature. Although Einstein’s model had great success in explaining the main
features of this behaviour, the model is a great oversimplification and has limita-
tions. This is because it assumes that the atoms vibrate totally independently of
each other about fixed lattice sites. In reality, they do not because the atoms are
coupled together. A macroscopic mechanical analogue of a crystal lattice would
consist of billiard balls connected together with identical springs. Figure 4.13 shows
a two-dimensional picture of this. If one ball is set vibrating, say the one labelled
A in Figure 4.13, a disturbance will propagate throughout the whole system until
all the balls are vibrating. Similarly, the atoms in a crystal are coupled rather than
independent oscillators. Einstein’s theory can be improved by describing the N

atoms in a crystal in terms of the 3N normal modes of vibration of the whole crys-
tal, each with its own characteristic angular frequency ω1, ω2, . . . , ω3N . In terms
of these normal modes, the lattice vibrations are equivalent to 3N independent
harmonic oscillators with these angular frequencies (see also Mandl,2 Section 6.3).

A

Figure 4.13 Two-dimensional analogue of a crystal lattice, consisting of billiard balls con-
nected by springs.

Coupling can also occur in oscillating electrical circuits (cf. Figure 1.21). An
electrical version of a coupled oscillator is shown in Figure 4.14. A mutual (shared)
inductor M couples together the two electrical circuits where the magnetic flux
arising from the current in one circuit threads the second circuit. Any change of
flux induces a voltage in both circuits. A transformer, which is used to change the
amplitude of an AC voltage, depends upon mutual inductance for its operation.

C C

M

Figure 4.14 Example of a coupled electrical oscillator, where the coupling is provided by
the mutual inductance M .

2 Statistical Physics, F. Mandl, Second Edition, 1988, John Wiley & Sons, Ltd.
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4.5 FORCED OSCILLATIONS OF COUPLED OSCILLATORS

We saw in Chapter 3 that the amplitude of oscillation of a harmonic oscillator
becomes very large when a periodic driving force is applied at its natural frequency
of oscillation. At other driving frequencies the amplitude is relatively small. For
the case of two oscillators coupled together we may expect similar behaviour.
Now, however, there are two natural frequencies corresponding to the two nor-
mal frequencies. Thus we may expect that the system will exhibit large amplitude
oscillations when the driving frequency is close to either of these two normal fre-
quencies. This is indeed the case. We can explore forced oscillations by considering
the arrangement of two masses connected by springs as shown in Figure 4.15. This
is similar to the arrangement shown in Figure 4.10 but now the end s of one of
the outer springs is moved harmonically as ξ = a cos ωt . The displacements ξ, xa

and xb of the masses from equilibrium are shown in Figure 4.15 at some instant

s a b

xa xb
x

Figure 4.15 Forced oscillations of a coupled oscillator. The end s of the spring is moved
harmonically as ξ = a cos ωt .

of time. The resulting equation of motion for mass a is

m
d2xa

dt2
= −k(xa − ξ) + k(xb − xa) (4.30)

giving

d2xa

dt2
+ 2k

m
xa − k

m
xb = F0

m
cos ωt, (4.31)

where F0 = ka. Similarly, the equation of motion for mass b is

d2xb

dt2
− k

m
xa + 2k

m
xb = 0. (4.32)

We can solve these two simultaneous equations by, respectively, adding and sub-
tracting them. Thus

d2(xa + xb)

dt2
+ k

m
(xa + xb) = F0

m
cos ωt (4.33)

and

d2(xa − xb)

dt2
+ 3k

m
(xa − xb) = F0

m
cos ωt. (4.34)

We now change variables to the normal coordinates

q1 = (xa + xb) and q2 = (xa − xb) (4.35)



94 Coupled Oscillators

giving

d2q1

dt2
+ k

m
q1 = F0

m
cos ωt (4.36)

and

d2q2

dt2
+ 3k

m
q2 = F0

m
cos ωt. (4.37)

This is a striking result and illustrates the power and simplicity of describing the
coupled motion in terms of the normal coordinates. For each of the independent
coordinates q1 and q2 we have the equation for forced oscillations of a simple
harmonic oscillator, i.e. an equation of the same form as Equation (3.1) in Section
3.2.1, and we can at once take over the solutions, Equations (3.5a) and (3.7a),
from that section. We can describe the steady state solutions by the equations
q1 = C1 cos ωt and q2 = C2 cos ωt , where

C1 = F0/m

(ω2
1 − ω2)

, (4.38)

C2 = F0/m

(ω2
2 − ω2)

(4.39)

and where ω2
1 = k/m and ω2

2 = 3k/m. The maximum values of C1 and C2 given by
these equations are infinitely large when ω = ω1 and ω = ω2, respectively, so that
the amplitudes of oscillation would become infinite if the system were driven at one
of its normal frequencies. (We had a similar situation when considering a driven
oscillator in Section 3.2.1.) This is, of course, because we have neglected damping
that would limit their values in real situations. Nevertheless we can conclude that
a coupled oscillator will oscillate with large amplitude when it is driven at either
of its normal frequencies. At other driving frequencies the masses will oscillate at
the driving frequency but with much smaller amplitude. From Equation (4.35) we
have

xa = 1

2
(q1 + q2) = 1

2
(C1 + C2) cos ωt

and

xb = 1

2
(q1 − q2) = 1

2
(C1 − C2) cos ωt.

It follows from Equations (4.38) and (4.39) that when the driving frequency ω is
near the first normal frequency ω1 = √

k/m, we have |C1| � |C2|, and xa ≈ xb,
i.e. the two masses oscillate in phase. When the driving frequency ω is near the
second normal frequency ω2 = √

3k/m, one similarly obtains xa ≈ −xb, i.e. the
two masses oscillate in anti-phase.

Since a coupled system oscillates with large amplitude when driven at one of
its normal frequencies this provides a way of determining these frequencies exper-
imentally. A good example of this is provided by the vibrations of molecules that
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contain more than two atoms. For example, the molecule carbon dioxide (CO2) can
be modelled by three masses connected by two springs in a linear configuration
(see Figure 4.16). The central mass represents the carbon atom and the other
two masses represent the oxygen atoms while the springs represent the molecular
bonds. This system has two normal modes of vibration for displacements along the
line connecting the masses. These are called the symmetric stretch mode and the
asymmetric stretch mode as illustrated in Figure 4.16(a) and (b), respectively. In
the symmetric stretch mode the central mass remains fixed in position while the two
outer masses vibrate against it. In the asymmetric stretch mode the two outer masses
move in the same direction and maintain the same distance apart. However, since
there is no net translational motion, the central mass moves in the opposite direc-
tion to keep the position of the centre of mass stationary. The normal frequencies
of molecular vibrations are determined experimentally by absorption spectroscopy .
In this technique, radiation of tunable frequency is passed through a cell containing
the molecules of interest. The oscillating electric field of the radiation interacts
with the molecule, which behaves like a driven oscillator (see also Section 3.3).
The intensity of the radiation, after it has passed through the cell, is measured as
a function of its frequency. This gives the absorption spectrum of the molecule.
When the frequency of the radiation matches a normal frequency, the radiation is
strongly absorbed by the molecules. (We are effectively observing the power reso-
nance curve, see also Section 3.3.) The frequencies at which this absorption occurs
give directly the normal mode frequencies of the molecule. The measured values
of the frequency ν for the symmetric stretch and the asymmetric stretch modes of
the CO2 molecule are 4.0 × 1013 s−1 and 7.0 × 1013 s−1, respectively. The CO2

molecule also has a bending mode of vibration as illustrated in Figure 4.16(c). The
frequency of this mode is 2.0 × 1013 s−1. This bending motion can occur in two
orthogonal planes and since these have the same frequency of vibration they are
said to be degenerate in frequency. These frequencies lie in the far infrared region
of the electromagnetic spectrum, with corresponding wavelengths of ∼10 µm.

(a) O OC

(b) O OC

(c)

O O

C

Figure 4.16 A model of the normal modes of vibration of the CO2 molecule: (a) the
symmetric stretch mode; (b) the asymmetric stretch mode; and (c) the bending mode.
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Vibrations of CO2 molecules and some other molecules in the Earth’s atmosphere
play a key role in global warming because they strongly absorb radiation in the far
infrared. The surface temperature of the Sun is 5800 K and the radiation emitted
by the Sun peaks at about 500 nm. However, the surface of the Earth is at a
much lower temperature, ∼300 K, and its radiation peaks at ∼10 µm. The Earth’s
atmosphere is largely transparent at visible and near infrared wavelengths and the
Sun’s radiation passes through. However, the global-warming molecules absorb
the Earth’s far infrared radiation and act to trap its energy. This effect leads to an
increase in the surface temperature of the Earth.

4.6 TRANSVERSE OSCILLATIONS

In our discussion of the oscillations of masses coupled by springs (Section 4.4)
the periodic displacements of the masses took place along a line connecting them.
These are called longitudinal oscillations. It is also possible to have periodic dis-
placements in a direction perpendicular to this line. These are called transverse
oscillations and will be discussed further in Chapter 5. In the meantime we will
first consider the transverse oscillations of a single mass m connected by two
springs as shown in Figure 4.17. These have a spring constant k, and the length
l of each spring is greater than the unstretched length so that there is a tension
T in the springs. The mass is displaced in the transverse direction by a distance
y, where upward displacements are taken as positive. We first note that for small
displacements the tension in the springs remains constant, which we can see as
follows. For a displacement y, each spring will be extended by an amount �l

given by

�l = l

(
1

cos θ
− 1

)

y
k k

ll

m
T T

q q

Figure 4.17 Transverse displacement of a single mass m coupled by two springs of spring
constant k.

where θ = arctan(y/l). For small angles, cos θ � (1 − θ2)1/2, and so �l � lθ2/2.
If θ is small then θ2 is very small and so terms in θ2 can be neglected. Then
to a good approximation the spring extension is negligibly small and the tension
in the spring T can be considered to be constant. The springs do, however, exert
a restoring force on the mass that is equal to 2T sin θ . The resultant equation of
motion is

m
d2y

dt2
= −2T sin θ � −2T θ � −2T

y

l
(4.40)
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for small θ , giving to a good approximation:

d2y

dt2
= −2T

ml
y (4.41)

This is the equation of SHM with frequency
√

2T /ml. The system has this one
normal mode of vibration.

We now extend our discussion to a coupled oscillator consisting of two equal
masses connected by three identical springs of length l and under tension T , as
shown in Figure 4.18. The masses are displaced in the transverse direction by
distances of ya and yb, respectively. The directions of the forces acting on the
masses are indicated by the arrow heads and the resultant equations of motion for
the two masses are derived as follows. For mass a, we have

m
d2ya

dt2
= −T sin θ1 + T sin θ2 (4.42)

l l l

ya

b

a

q1

q2

q3

yb

Figure 4.18 Transverse displacements of two masses connected by springs.

giving, for small displacements,

m
d2ya

dt2
= −T

l
ya + T

l
(yb − ya) = T

l
(yb − 2ya). (4.43)

Similarly, we have for mass b

m
d2yb

dt2
= −T sin θ2 − T sin θ3

giving

m
d2yb

dt2
= T

l
(ya − 2yb). (4.44)

Substituting ya = Aeiωt and yb = Beiωt into Equations (4.43) and (4.44) and divid-
ing through by eiωt leads to

A

(
2T

l
− mω2

)
= T

l
B (4.45)
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and

T

l
A = B

(
2T

l
− mω2

)
. (4.46)

Equations (4.45) and (4.46) give two expressions for A/B, and equating these leads
to the quadratic equation in ω2:

(
2T

l
− mω2

)2

=
(

T

l

)2

(4.47)

with the solutions ω2 = T /ml and 3T /ml. Substituting for ω2 = T /ml in Equation
(4.45) gives A = B. This corresponds to the first normal mode of the system
where both masses move in the same directions as each other as illustrated in
Figure 4.19(a) and each performs SHM at the normal frequency ω1 = √

T /ml.
Substituting for ω2 = 3T /ml in Equation (4.45) gives A = −B. This corresponds
to the second normal mode of the system where the two masses move in opposite
directions to each other as illustrated in Figure 4.19(b) and each performs SHM at
the normal frequency ω2 = √

3T /ml.

(a)

ba

(b)

a

b

Figure 4.19 The two normal modes for transverse oscillations of two masses connected by
springs where (a) the masses move in the same directions as each other and (b) they move
in opposite directions.

We see that the frequency of oscillation depends on the particular normal mode. It
is also proportional to the square root of the tension T and inversely proportional
to the square root of the mass m. We will encounter similar relationships for
standing waves on taut strings in Chapter 5. Indeed the normal modes shown in
Figure 4.19 are already starting to resemble standing waves on a taut string. This
similarity is even more striking when we have a larger number N of masses. To
emphasise this similarity we show in Figure 4.20 an arrangement of nine masses
connected by elastic strings of equal length l. The figure shows schematically three
of the possible modes of oscillation of this arrangement. Without pursuing the
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details of the mathematics, we note that in each normal mode all the individual
masses oscillate in SHM at the same frequency, equal to the normal frequency. The
amplitude of the oscillations will, however, vary from mass to mass as indicated by
Figure 4.20. The number of normal modes is equal to the number of masses and
the highest possible normal mode will occur when alternate masses are moving
in opposite directions, as shown in Figure 4.20(c). This gives an upper limit to
the highest normal frequency that is possible. If we simultaneously take the limits
N → ∞, m → 0 and l → 0, in such a way that Nm remains finite, we indeed
obtain the situation of standing waves on a taut string. Thus we see that coupled
oscillators are the bridge between vibrations and waves. Our discussion of coupled
oscillators has also seen the repeated appearance of SHM again and again, and this
further emphasises the importance and diversity of this form of motion.

(b)

(c)

(a)

Figure 4.20 Some normal modes of transverse oscillations for nine masses connected by
elastic strings: (a) the first normal mode; (b) the second normal mode; and (c) the highest
normal mode.

PROBLEMS 4

4.1 Two simple pendulums, each of length 0.300 m and mass 0.950 kg, are coupled by
attaching a light, horizontal spring of spring constant k = 1.50 N m−1 to the masses.
(a) Determine the frequencies of the two normal modes. (b) One of the pendulums is
held at a small distance away from its equilibrium position while the other pendulum is
held at its equilibrium position. The two pendulums are then released simultaneously.
Show that after a time of approximately 12 s the amplitude of oscillation of the first
pendulum will become equal to zero momentarily. (Assume g = 9.81 m s−2.)

4.2 Two simple pendulums, each of length 0.50 m and mass 5.0 kg, are coupled by
attaching a light, horizontal spring of spring constant k = 20 N m−1 to the masses.
(a) One of the masses is held at a horizontal displacement xa = +5.0 mm while the
other mass is held at a horizontal displacement xb = +5.0 mm. The two masses are
then released from rest simultaneously. Using the expressions

xa = 1

2
(C1 cos ω1t + C2 cos ω2t) and xb = 1

2
(C1 cos ω1t − C2 cos ω2t)
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where ω1 and ω2 are the normal frequencies, find the values of C1 and C2. Plot xa and
xb as a function of time t over the time interval t = 0 to 10 s. (b) Repeat part (a) for
initial conditions: (i) xa = +5.0 mm, xb = −5.0 mm, (ii) xa = +10 mm, xb = 0 mm
and (iii) xa = +10 mm, xb = +5.0 mm. (Assume g = 9.81 m s−2.)

4.3 Consider the example of two identical masses connected by three identical springs as
shown in Figure 4.11. Combine the equations of motion of the two masses to obtain
a pair of equations of the form

d2q1

dt2
+ ω2

1q1 = 0 and
d2q2

dt2
+ ω2

2q2 = 0

and hence obtain the normal coordinates q1 and q2 and the respective normal frequen-
cies ω1 and ω2.

4.4 Two identical pendulums of the same mass m are connected by a light spring. The
displacements of the two masses are given, respectively, by

xa = A cos
(ω2 − ω1)t

2
cos

(ω2 + ω1)t

2
, xb = A sin

(ω2 − ω1)t

2
sin

(ω2 + ω1)t

2
.

Assume that the spring is sufficiently weak that its potential energy can be neglected
and that the energy of each pendulum can be considered to be constant over a cycle
of its oscillation. (a) Show that the energies of the two masses are

Ea = 1

2
mA2

(
ω2 + ω1

2

)2

cos2 (ω2 − ω1)t

2

and

Eb = 1

2
mA2

(
ω2 + ω1

2

)2

sin2 (ω2 − ω1)t

2

and that the total energy of the system remains constant. (b) Sketch Ea and Eb over
several cycles on the same graph. What is the frequency at which there is total exchange
of energy between the two masses?

4.5

q1

x1

q2

m

l

m

l

x2

Two identical masses of mass m are suspended from a rigid support by two strings of
length l and oscillate in the vertical plane as illustrated by the figure. The oscillations
are of sufficiently small amplitude that any changes in the tensions of the two strings
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from their values when the system is in static equilibrium can be neglected. In addition
the small-angle approximation sin θ � θ can be made. (a) Show that the equations of
motions of the upper and lower masses, respectively, are

d2x1

dt2
+ 3g

l
x1 − g

l
x2 = 0

and
d2x2

dt2
+ g

l
x2 − g

l
x1 = 0.

(b) Assuming solutions of the form x1 = A cos ωt and x2 =B cos ωt , show that the two
normal frequencies of the system are

√
(2 ± √

2)g/l and find the corresponding ratios,
B/A. (c) Determine the periods of the two normal modes for l = 1.0 m and compare
these with the period of a simple pendulum of this length. (Assume g = 9.81 m s−2.)

4.6
m mM

k k

x1 x2 x3

The figure shows two identical masses of mass m connected to a third mass of mass M
by two identical springs of spring constant k. Consider vibrations of the masses along
the line joining their centres where x1, x2 and x3 are their respective displacements
from equilibrium. (a) Without any mathematical detail, use your physical intuition
to deduce the normal frequency for symmetric-stretch vibrations. (b) Show that the
equations of motion of the three masses are:

d2x1

dt2
+ ω2

1x1 − ω2
1x2 = 0,

d2x2

dt2
− ω2

2x1 + 2ω2
2x2 − ω2

2x3 = 0

and
d2x3

dt2
− ω2

1x2 + ω2
1x3 = 0,

where ω2
1 = k/m and ω2

2 = k/M . (c) Show that the normal frequencies of the system
are

√
k/m and

√
k(2m + M)/Mn. (d) Determine the ratio of normal frequencies for

m/M = 16/12 and compare with the vibrational frequencies of the CO2 molecule
given in the text.

4.7

3m

m

k

4k
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The figure shows two masses of mass 3m and m hanging from springs of spring
constants 4k and k, respectively. (a) Show that the normal frequencies of oscillation
are

√
2k/m and

√
2k/3m. (b) Describe the two normal modes.

4.8 k k k k k k
m m mmm

Five identical masses are connected by six identical springs between two rigid walls,
as illustrated in the figure, and move without friction on a horizontal surface. How
many normal modes of vibration in the transverse direction does the system have?
Sketch these normal modes bearing in mind that the transverse positions of the masses
pass through sinusoidal curves (cf. Figure 4.20).

4.9

m

k1

k2

M

F0coswt

The figure shows two masses M and m suspended from a rigid ceiling by springs of
spring constant k1 and k2. (a) If the mass M is subjected to a driving force F0 cos ωt
in the downward direction, show that the equations of motion of the masses are

M
d2x1

dt2
+ (k1 + k2)x1 − k2x2 = F0 cos ωt

and

m
d2x2

dt2
− k2x1 + k2x2 = 0,

where x1 and x2 are the displacements of the masses M and m, respectively, from
their equilibrium positions. (b) Assuming solutions of the form x1 = A cos ωt and
x2 = B cos ωt show that

A = F0(k2 − mω2)

(k1 + k2 − Mω2)(k2 − mω2) − k2
2

and

B = F0k2

(k1 + k2 − Mω2)(k2 − mω2) − k2
2

.

(c) For ω = √
k1/M show that the amplitude of vibration of mass M will be zero if

k2/k1 = m/M .
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4.10
m mm

k k k k

Three identical masses of mass m are connected by four identical springs of spring
constant k between two rigid walls, as shown in the figure, and move without friction
on a horizontal surface. They vibrate along the line joining their centres. (a) Show that
the normal frequencies of the system are

√
2k/m and

√
(2 ± √

2)k/m. (b) Describe
the three normal modes of vibration.

[Hint: The determinant

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =

a11(a22a33 − a32a23) + a21(a32a13 − a12a33) + a31(a12a23 − a22a13).]





5
Travelling Waves

Waves arise in a wide range of physical phenomena. They occur as ripples on a pond
and as seismic waves following an earthquake. Music is carried by sound waves and
most of what we know about the Universe comes from electromagnetic waves that
reach the Earth. Furthermore, we communicate with each other through a variety
of different waves. At the microscopic level, the particles of matter have a wave
nature as expressed by quantum wave mechanics. At the other end of the scale,
scientists are trying to detect gravitational waves that are predicted to occur when
massive astronomical objects like black holes move rapidly. Even a Mexican wave
travelling around a sports arena has many of the characteristics of wave motion. It is
not surprising therefore that waves are at the heart of many branches of the physical
sciences including optics, electromagnetism, quantum mechanics and acoustics.

In this chapter we begin to explore the physical characteristics of waves and their
mathematical description. We distinguish between travelling waves and standing
waves . Ripples on a pond are an example of travelling waves. A plucked guitar
string provides an example of a standing wave. The present chapter is devoted to
travelling waves while standing waves will be discussed in Chapter 6. Travelling
waves may be either transverse waves or longitudinal waves . We have already seen
the difference between these two types of motion in Chapter 4. In transverse waves
the change in the corresponding physical quantity, e.g. displacement, occurs in the
direction at right angles to the direction of travel of the wave, as for the outgoing
ripples on a pond. For longitudinal waves, the change occurs along the direction
of travel. An example of this is the longitudinal compressions and rarefactions
of the air that occur in the propagation of a sound wave. It is easier to see the
physical processes going on in a transverse wave and so we will concentrate on
them in the present chapter. However, both transverse and longitudinal waves are
solutions of the wave equation , which is one of the most fundamental equations
in physics. We will deal with mechanical waves that travel through some material
or medium . However, not all waves are mechanical waves: electromagnetic waves
can propagate even in a vacuum. We will discuss the energy carried by a wave

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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and the behaviour of a wave when it encounters a boundary in passing from one
medium to another. Most of our discussion will be devoted to waves travelling in
one dimension but we will introduce waves that move in two or three dimensions.
These have much in common with one-dimensional waves.

5.1 PHYSICAL CHARACTERISTICS OF WAVES

When we observe a wave it is clear that something, that we may call a dis-
turbance, travels or propagates from one region of a medium to another. This
disturbance travels at a definite velocity v that is usually determined by the mechan-
ical properties of the medium. For a taut string these are the mass per unit length
and the tension in the string. However, the medium does not travel with the wave.
For example, if we tap one end of a solid metal rod, a sound wave propagates
along the rod but the rod itself does not travel with the wave. (For this reason,
waves can travel at high velocities.) In fact, the particles of the rod move about
their equilibrium positions to which they are bound. We saw such behaviour for
the transverse oscillations of masses connected by springs in Section 4.6. There
the equilibrium position was the straight line along which the masses lie when at
rest and the springs provide the restoring force. We also saw in Chapter 4 that an
oscillator can transfer all of its energy to another oscillator to which it is coupled
under appropriate conditions. A simplified picture of a wave travelling through a
medium is therefore a long line of oscillators coupled together in some way, just
like the atoms in a one-dimensional crystal. Then if the end oscillator is displaced
from its equilibrium position it exerts a force on its neighbour. In turn this force
and the resultant displacement propagate down the line of oscillators. Energy must
be put into the system to cause the initial disturbance and it is this energy that
is transmitted by the wave. This energy is evident as the destructive power of a
tsunami and in the warmth of the Sun’s rays. On a sunny day the solar energy
deposited on the Earth’s surface is about 1 kJ m−2 s−1; a power of 1 kW m−2.
This is a substantial amount of power that is an increasingly important source of
energy for the World’s needs.

5.2 TRAVELLING WAVES

A common experience is to take the end of a long rope like a clothesline and
move one end of it up and down rapidly to launch a wave pulse down the rope.
A schematic diagram of this is shown in Figure 5.1. The pulse roughly holds
its shape and travels with a definite velocity along the rope. Here we will use a
Gaussian function to model this travelling wave pulse. The Gaussian function can
be represented by

y = A exp[−(x2/a2)], (5.1)

where A and a are constants. This function appears in many branches of the physical
sciences and is plotted in Figure 5.2. When x = 0, y = A and when x = ±a,



Travelling Waves 107

velocity

Figure 5.1 A wave pulse can be launched down a long rope by moving the end of the rope
rapidly up and down.

A

x
0

y

b

a a a

b

y = Aexp[−x2 / a2] y = Aexp[−(x − b)2 / a2]

a

Figure 5.2 The Gaussian functions y = A exp[−(x2/a2)] and y(x)= A exp[−(x − b)2/a2].
A is the height of the Gaussian and a characterises its width. These two Gaussians have the
same shape but are separated by distance b.

y =A/e. A corresponds to the height of the Gaussian and a is a measure of its
width . If we now change the variable x to (x − b) we obtain

y = A exp[−(x − b)2/a2]. (5.2)

This function is also plotted in Figure 5.2. We see that the shape of the function,
as characterised by its height and width, is the same as before. We have simply
moved the Gaussian a distance b to the left, so that now it has its maximum value
A at x = b. Suppose we now change the variable x to (x − vt) where t is time
and v is a constant with the dimensions of distance/time. Then we obtain

y(x, t) = A exp[−(x − vt)2/a2]. (5.3)

The value of vt increases linearly with time. Consequently, Equation (5.3) describes
a Gaussian that moves in the positive x-direction at a constant rate just like the
wave pulse on the rope. This is illustrated in Figure 5.3 where the Gaussian is
plotted at three different instants of time that are separated by equal time intervals
of δt . The rate at which it moves is the velocity v.

We can generalise the above by saying that when a wave is going in the posi-
tive x-direction, the dependence of the shape of the rope on x and t must be of
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v

Figure 5.3 The Gaussian y = A exp[−(x − vt)2/a2] plotted as a function of position x, at
three different instants of time, separated by equal time intervals of δt .

the general form f (x − vt), where f is some function of (x − vt). Examples of
f (x − vt) are the Gaussian function A exp[−(x − vt)2/a2] that we saw above, and
the travelling sinusoidal wave A sin[2π(x − vt)/λ] that we will discuss in the next
section. The shape of the wave is given by f (x − vt) at t = 0, i.e. by f (x) as
illustrated in Figure 5.4(a). At time t , the wave has moved a distance vt to the
right. However it has retained its shape, as shown in Figure 5.4(b). This is the
important characteristic of wave motion: the wave retains its shape as it travels
along. Clearly, we could determine the shape of the wave by taking a snapshot
of the rope at a particular instant of time. However, we could also find this shape
by measuring the variation in the displacement of a given point on the rope as
the wave passes by. A wave travelling in the negative x-direction must be of the
general form g(x + vt) where g is some function of (x + vt). Again at t = 0, g(x)

x

y

x

y v

v

(a)

(b)

t = 0

t = t

vt

f (x−vt)

f (x)

Figure 5.4 A wave travelling in the positive x-direction, defined by the function y =
f (x − vt). (a) f (x − vt) ≡ f (x) at time t = 0, which gives the shape of the wave. (b)
f (x − vt) at time t when the wave has moved a distance vt to the right.
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t = 0

t = t

g(x)

g(x+vt)

Figure 5.5 A wave travelling in the negative x-direction, defined by the function y =
g(x + vt). (a) g(x + vt) ≡ g(x) at time t = 0. (b) g(x + vt) at time t when the wave has
moved a distance vt to the left.

gives the shape of the wave as illustrated in Figure 5.5(a). At time t , the wave has
moved to the left by a distance vt but its shape remains the same, as shown in
Figure 5.5(b). The general form of any wave motion of the rope can be written as

y = f (x − vt) + g(x + vt) (5.4)

and can be considered as a superposition of two waves, each of speed v, travelling
in opposite directions. In Chapter 6 we will see that the superposition of waves
travelling in opposite directions is of great physical importance.

5.2.1 Travelling sinusoidal waves

Sinusoidal waves are important because they occur in many physical situations,
such as in the propagation of electromagnetic radiation. They are also important
because more complicated wave shapes can be decomposed into a combination
of sinusoidal waves. Consequently, if we understand sinusoidal waves we can
understand these more complicated waves. We return to this important principle
in Chapter 6. A travelling sinusoidal wave is illustrated in Figure 5.6, at various
instants of time. The dotted parts of the curves indicate that the wave extends a
large distance in both directions to avoid any effects due to reflections of the wave
at a fixed end. Such reflections will be discussed in Section 5.7. A sinusoidal wave
is a repeating pattern. The length of one complete pattern is the distance between
two successive maxima (crests), or between any two corresponding points. This
repeat distance is the wavelength λ of the wave. The sinusoidal wave propagates
along the x-direction and the displacement is in the y-direction, at right angles to
the propagation direction. We could generate such a sinusoidal wave by moving
the end of a long rope up and down in simple harmonic motion. The displacements
lie in a single plane, i.e. in the x-y plane, and so we describe the waves as linearly
polarised in that plane. We represent the travelling sinusoidal wave by

y(x, t) = A sin
2π

λ
(x − vt) (5.5)
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Figure 5.6 Schematic representation of a travelling sinusoidal wave of wavelength λ and
period T , at the different times as indicated. Each point on the wave travels at velocity v.
The open circles denote points on the wave that are separated by wavelength λ. These points
move in phase with each other in the transverse direction.

where A is the amplitude and λ is the wavelength. This function repeats itself each
time x increases by the distance λ. At t = 0, we have y = A sin(2πx/λ) which
shows the sinusoidal shape of the wave. The transverse displacement y given by
Equation (5.5) is a function of two variables x and t and it is interesting to see what
happens if we keep either x or t fixed. Keeping x fixed is like watching a leaf on a
pond that bobs up and down with the motion of the water ripples. Keeping t fixed
is like taking a snapshot of the pond that fixes the positions of the water ripples in
time. The sinusoidal wave travels at a definite velocity v in the positive x-direction,
as can be seen from the progression of a wave crest with time in Figure 5.6. The
number of times per unit time that a wave crest passes a fixed point, at say x = xo,
is the frequency ν of the wave. The frequency ν is equal to the velocity v of the
wave divided by the wavelength λ. Hence we obtain

νλ = v. (5.6)

We see that the important parameters of the wave (wavelength, frequency and
velocity) are related by this simple equation. The time T that a wave crest takes
to travel a distance λ is equal to λ/v, i.e. the reciprocal of the frequency. Hence,

ν = 1

T
, (5.7)

where T is the period of the wave.



Travelling Waves 111

Figure 5.6 also illustrates how the displacement of a point on the wave, at x = xo,
changes with time. The point moves up and down as the wave passes by and
indeed its motion is simple harmonic. We can see this mathematically as follows.
We have

y(x, t) = A sin
2π

λ
(x − vt). (5.8)

Then at the fixed position, x = xo, we have

y(xo, t) = A sin
2π

λ
(xo − vt). (5.9)

Now since x has a fixed value and we want to see how y varies with t it is useful
to write this equation in the equivalent form

y(xo, t) = −A sin
2π

λ
(vt − xo), (5.10)

using the relationship sin(α − β) = − sin(β − α). Equation (5.10) shows that the
displacement varies sinusoidally with time t with an angular frequency ω where

ω = 2πv

λ
= 2πν. (5.11)

Each point on the wave completes one period of oscillation in time period T , and
we emphasise that all points along the wave oscillate at the same frequency ω.
We can consider the term 2πxo/λ in Equation (5.10) as a phase angle. Thus, as
illustrated in Figure 5.6, points at x = xo and x = xo + λ, denoted by the open
circles, oscillate in phase with each other. As the wave propagates, any particular
point on it, for example the wave crest denoted by the bold dots in Figure 5.6,
maintains a constant value of transverse displacement y, and hence a constant value
of (x − vt). Since (x − vt) = constant, dx/dt = v, which of course is the wave
velocity.

We can use Equation (5.8) to obtain alternative mathematical expressions for the
wave. Substituting for v = νλ in Equation (5.8) we obtain

y(x, t) = A sin

(
2πx

λ
− 2πνt

)
. (5.12)

We define the quantity 2π/λ as the wavenumber k, i.e.

k = 2π/λ. (5.13)

Substituting for ω = 2πν from Equation (5.11) and k from Equation (5.13) in
Equation (5.12), we obtain

y(x, t) = A sin(kx − ωt). (5.14)

In addition, using the relationships νλ = v and 2πν = ω, we have

v = ω

k
. (5.15)
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The wave velocity is equal to the angular frequency divided by the wavenumber.
Although we have used sine functions, we can equally well use cosine functions
such as

y(x, t) = A cos(kx − ωt), (5.16)

since the cosine function is simply the sine function with a phase difference of
π/2. This is illustrated in Figure 5.7, which shows snapshots of Equations (5.14)
and (5.16) at t = 0. We simply need to choose the solution that fits the initial
conditions. Finally, in Section 3.6 we saw that it can be advantageous to use a
complex representation of periodic motion. This is also the case for wave motion,
remembering that, as usual, the real part of the complex form is the physical
quantity. Thus we can write the following alternative mathematical expressions for
travelling sinusoidal waves:

y(x, t) = A exp
2π

λ
i(x − vt) (5.17)

y(x, t) = A exp 2πi
(x

λ
− νt

)
(5.18)

y(x, t) = A exp i(kx − ωt). (5.19)

x

y

A

y = Asin(kx – wt) y = Acos(kx – wt)

t = 0

l = 2p /k

Figure 5.7 Representation of the functions y = A sin(kx − ωt) and y = A cos(kx − ωt) at
time t = 0, showing the phase relationship between the two functions.

5.3 THE WAVE EQUATION

In Section 5.2 we saw that the general form of any wave motion is given by

y = f (x − vt) + g(x + vt). (5.4)

We now show that this is the general solution of the wave equation . We start with
the function f (x − vt) and change variables to u = (x − vt) to obtain the function
f (u). Notice that f (u) is a function only of u. Then

∂f

∂x
= df

du

∂u

∂x
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and

∂2f

∂x2
= ∂

∂x

(
df

du

∂u

∂x

)
= d2f

du2

(
∂u

∂x

)2

+ df

du

(
∂2u

∂x2

)
.

Since ∂u/∂x = 1 and ∂2u/∂x2 = 0, we have

∂2f

∂x2
= d2f

du2
. (5.20)

Similarly,

∂2f

∂t2
= v2 d2f

du2
. (5.21)

Combining Equations (5.20) and (5.21) we obtain

∂2f

∂t2
= v2 ∂2f

∂x2
. (5.22a)

Similarly, we can readily see that g(x + vt) satisfies the equation

∂2g

∂t2
= v2 ∂2g

∂x2
. (5.22b)

[It does not matter that the sign of the velocity has changed between f (x − vt)

and g(x + vt) since only the square of the velocity occurs in Equation (5.22).]
Thus

∂2(f + g)

∂t2
= v2 ∂2(f + g)

∂x2

and hence we can write

∂2y

∂t2
= v2 ∂2y

∂x2
. (5.23)

This is a fundamental result. Equation (5.23) is the one-dimensional wave equation .
(The position of the velocity v in Equation (5.23) is consistent with the dimen-
sions of the quantities involved.) The general solution of it is Equation (5.4),
namely

y = f (x − vt) + g(x + vt). (5.4)

The wave equation (5.23) and its general solution apply to all waves that travel in
one dimension. For example, they describe sound waves in a long tube where the
relevant physical parameter is the local air pressure P (x, t). They describe voltage
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waves V (x, t) on a transmission line and temperature fluctuations T (x, t) along a
metal rod. Consequently we write the wave equation more generally as

∂2ψ

∂t2
= v2 ∂2ψ

∂x2
(5.23a)

and its general solution as

ψ = f (x − vt) + g(x + vt), (5.4a)

where ψ represents the relevant physical quantity.
As a specific example of the above discussion, we have the travelling sinusoidal

wave y = A sin[2π(x − vt)/λ]. First, differentiating with respect to x and keeping
t constant, we obtain

∂y

∂x
=

(
2π

λ

)
A cos

2π

λ
(x − vt)

and

∂2y

∂x2
= −

(
2π

λ

)2

A sin
2π

λ
(x − vt). (5.24)

Similarly,

∂2y

∂t2
= −

(
2πv

λ

)2

A sin
2π

λ
(x − vt). (5.25)

Finally, dividing Equation (5.25) by Equation (5.24) we obtain the expected result,

∂2y

∂t2
= v2 ∂2y

∂x2
.

5.4 THE EQUATION OF A VIBRATING STRING

We now derive the equation of motion for transverse vibrations on a taut string.
We will find that this is just the wave equation (5.23) and it will give us the
velocity v in the latter equation in terms of the physical parameters of the system.
We consider a short segment of the string and the forces that act upon it as the
wave passes by. The string has mass per unit length µ and is under tension T .
The wave propagates in the x-direction and the transverse displacements are in
the y-direction. For small values of y the tension in the string can be assumed to
be constant (cf. Section 4.6). Figure 5.8 shows the segment of the string between
positions x and x + δx. Since there is a wave travelling along the string, the slopes
of the string at these two positions will be different as indicated in Figure 5.8. The
angles that the string makes with the x-axis are θ and θ + δθ at x and x + δx,
respectively. The segment of the string will be subject to a restoring force due to the
tension T in the string. We can resolve this force into its components in the x- and
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y
Tsin(q + dq) T

q +dq

T

x x + dx

Tsinq

x

q

Figure 5.8 Segment of a taut string between x and x + δx, carrying a wave. The forces
acting on the segment and the directions of these forces are indicated.

y-directions. We deal first with the y-component of the force, the transverse force
that causes the segment to return to its equilibrium position. At x the y-component
of the force Fy is equal to T sin θ . For small values of θ we have

sin θ � θ � tan θ = ∂y

∂x
. (5.26)

We see that under this condition, the transverse force at a given point is equal to
the tension in the string times the slope of the string at that point, i.e.

Fy = T
∂y

∂x
. (5.27)

Similarly, the transverse force at x + δx is equal to the tension T times the slope
at that point. The slope of the string varies smoothly and slowly from positions x

to x + δx, under the assumption of small θ . Hence to a good approximation, we
can say that

(slope at x + δx) = (slope at x) + (rate of change of slope) × δx,

i.e. (
∂y

∂x

)
x+δx

=
(

∂y

∂x

)
x

+ ∂

∂x

(
∂y

∂x

)
δx

=
(

∂y

∂x

)
x

+
(

∂2y

∂x2

)
δx.

Hence, the transverse force at x + δx is

T

[(
∂y

∂x

)
x

+
(

∂2y

∂x2

)
δx

]
. (5.28)
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This acts in the opposite direction to the transverse force at x (see Figure 5.8).
Thus the resultant transverse force on the segment of the string is

T

[(
∂y

∂x

)
x

+
(

∂2y

∂x2

)
δx −

(
∂y

∂x

)
x

]
= T

(
∂2y

∂x2

)
δx. (5.29)

We now consider the forces acting on the segment in the x-direction. The two ends
of the segment experience opposing forces in this direction. The x-component of
the force at position x is −T cos θ and the x-component at x + δx is T cos(θ + δθ).
Hence the resultant force on the segment is

T cos(θ + δθ) − T cos θ. (5.30)

Since θ is small, both cos θ and cos(θ + δθ) are both approximately equal to unity.
Hence, to a good approximation, the resultant force in the x-direction is zero and
there is no movement of the segment in that direction. We now use Newton’s
second law and Equation (5.29) to deduce the equation of motion of the segment
in the y-direction. Since the mass of the segment is µδx, we have

µδx
∂2y

∂t2
= T

(
∂2y

∂x2

)
δx

or

∂2y

∂t2
= T

µ

∂2y

∂x2
. (5.31)

This is the equation that describes wave motion on a taut string. By comparing this
with the one-dimensional wave equation

∂2y

∂t2
= v2 ∂2y

∂x2
, (5.23)

we see that the velocity v of the wave along the string is given by

v =
√

T

µ
. (5.32)

The velocity depends on the mass per unit length of the string and also on the
tension in the string. The dimensions of

√
T /µ are [length][time]−1 as required.

5.5 THE ENERGY IN A WAVE

In this section we turn our attention to the energy that is contained in a wave.
(In Section 5.6 we will consider the rate at which this energy is transported in a
travelling wave.) We again consider the case of transverse waves on a taut string
and imagine the string to be divided into short segments of width δx and mass
µδx, where µ is the mass per unit length. As the wave moves along the string,
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these segments will oscillate in the transverse direction and so will have kinetic
energy K given by

K = 1

2
µδx

(
∂y

∂t

)2

. (5.33)

In addition, the segments will be slightly stretched when they are not at their equi-
librium positions. Since the string is under tension, the segments will therefore also
have potential energy U . This potential energy is equal to the extension times the
tension T in the string, which we assume to be constant. To a good approximation,
the extended length of a segment δs is related to the unstretched length δx (see
Figure 5.9) by

δs = δx

cos θ
= δx

(1 − sin2 θ)1/2
.

x

y

θ

ds

dx

Figure 5.9 The equilibrium length δx and stretched length δs of a segment of a taut string
carrying a wave.

Since θ is small,

δs � δx

(1 − θ2)1/2
� δx

(
1 + 1

2
θ2

)
. (5.34)

For small θ , we also have θ = ∂y/∂x. Thus

δs � δx

[
1 + 1

2

(
∂y

∂x

)2
]

. (5.35)

To a good approximation the potential energy is therefore given by

U = T (δs − δx) = 1

2
T δx

(
∂y

∂x

)2

. (5.36)
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We can use Equations (5.33) and (5.36) to write down the energy in a portion
a ≤ x ≤ b of a string at time t , which is given by

E = 1

2

∫ b

a

dx

[
µ

(
∂y

∂t

)2

+ T

(
∂y

∂x

)2
]

= 1

2
µ

∫ b

a

dx

[(
∂y

∂t

)2

+ v2
(

∂y

∂x

)2
]

(5.37)
where we have used the result v = √

T /µ, Equation (5.32). These are general
results that apply to any transverse wave on the string.

As an example of the above discussion, we consider the sinusoidal wave

y = A sin(kx − ωt). (5.14)

In particular we consider a length of the string equal to one wavelength λ.
Figure 5.10(a) is a snapshot of the string between x = xo and x = xo + λ, at a
particular instant of time. It shows the variation of the instantaneous displacement
y with distance x. The velocity ∂y/∂t = −ωA cos(kx − ωt) and Figure 5.10(b)
shows the variation of the instantaneous velocity with x. From Equation (5.33)
the kinetic energy of a segment δx of the string at position x and time t is
given by

K = 1

2
µδx

(
∂y

∂t

)2

= 1

2
µδxω2A2 cos2(kx − ωt). (5.38)

(a)

x

y

(b)

(c)

(d)

K

U

x

x

x

∂y

∂t

xo xo + l

λ

Figure 5.10 (a) Snapshot of a portion of a string carrying a travelling sinusoidal wave
over one complete wavelength λ. (b) Variation of instantaneous transverse velocity of the
wave ∂y/∂t . (c) Variation of instantaneous kinetic energy K . (d) Variation of instantaneous
potential energy U .
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The resultant variation of the kinetic energy is shown in Figure 5.10(c). The total
kinetic energy contained within the wavelength λ is given by

Ktotal = 1

2
µω2A2

∫ λ

0
cos2(kx − ωt)dx. (5.39)

At any given instant of time, t has a fixed value and so t is a constant in the
integration of Equation (5.39). Then

∫ λ

0
cos2(kx − ωt)dx = λ

2
,

giving

Ktotal = 1

4
µω2A2λ. (5.40)

The total kinetic energy in a wavelength is constant and does not change with
time. [The total kinetic energy is, of course, equal to the area under the curve
of Figure 5.10(c).] Similarly, we find from Equation (5.36) that the instantaneous
potential energy U of a string segment at position x and time t is given by

U = 1

2
v2µδx

(
∂y

∂x

)2

= 1

2
v2µδxk2A2 cos2(kx − ωt)

= 1

2
µδxω2A2 cos2(kx − ωt) (5.41)

using v = ω/k, Equation (5.15). The variation of the instantaneous potential energy
with x is shown in Figure 5.10(d). The total potential energy is obtained by inte-
grating Equation (5.41) over the complete wavelength. The result is

Utotal = 1

4
µω2A2λ. (5.42)

Comparing Equations (5.40) and (5.42) we see that the total kinetic energy and the
total potential energy contained in a wavelength of the string are equal. The total
energy in a wavelength is then given by

Etotal = 1

2
µω2A2λ. (5.43)

The total energy varies as the square of the amplitude of the wave and the square of
the frequency of the wave. Thus the energy quadruples if we double the amplitude
or double the frequency of the wave. These equations for the energies hold for all
values of t .

5.6 THE TRANSPORT OF ENERGY BY A WAVE

In Section 5.5 we saw that a travelling wave contains both kinetic and potential
energy and we obtained a general expression for the total energy E in a portion
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a ≤ x ≤ b of a string:

E = 1

2
µ

∫ b

a

dx

[(
∂y

∂t

)2

+ v2
(

∂y

∂x

)2
]
. (5.37)

This equation tells us that energy is associated with a derivative of the displacement
with respect to either time or position, i.e. ∂y/∂t or ∂y/∂x, respectively. For a wave
pulse, such as the Gaussian pulse shown in Figure 5.3, the displacement y is zero
except within the finite spatial extent of the pulse. It follows from Equation (5.37)
that all the energy must therefore be contained within the pulse and this energy is
transported at the velocity of the pulse.

For the case of a sinusoidal wave, Figure 5.10 showed how the energy is dis-
tributed along a wavelength, at a particular instant of time. Figure 5.11 shows the
displacement y and the energy distribution of part of a sinusoidal wave travelling
with velocity v to the right. This figure serves to illustrate how this energy dis-
tribution is carried along with the wave at the velocity v. The total energy in a
wavelength λ is given by

Etotal = 1

2
µω2A2λ. (5.43)

E

x

y

(b)

x

(a)

v

v

Figure 5.11 Part of a sinusoidal wave travelling at velocity v towards the right. (a) The
displacement of the wave and (b) the energy distribution in the wave. The energy is carried
along with the wave at velocity v.

The distance travelled by the wave in unit time is equal to v. The energy contained
within this length is therefore

Etotal × v

λ
= 1

2
µω2A2v.

This is the energy carried by the wave across any line at right angles to the direction
of propagation in unit time, i.e. the power P of the wave. Hence

P = 1

2
µω2A2v. (5.44)

The power of a wave depends on the square of its frequency, the square of its
amplitude and its velocity.
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5.7 WAVES AT DISCONTINUITIES

When a wave encounters a discontinuity at the boundary between two different
media, some fraction of the wave will in general be reflected. We experience such
reflections in many physical situations. If we jiggle a rope that is fixed at its other
end, we observe a wave reflected travelling back towards us. We hear an echo if
we clap our hands near a wall and we see that when light strikes a glass surface
some of the light is reflected. In general therefore, there will be an incident wave,
a transmitted wave and a reflected wave at a discontinuity. We shall now consider
how the relative amplitudes and phases of these three waves can be determined. We
approach this problem by considering the arrangement of two long strings smoothly
joined at x = 0 with a constant tension along the strings. The strings have different
values of mass per unit length µ, which gives rise to the discontinuity. Since the
wave velocity from Equation (5.32) is given by v = √

T /µ, the wave will travel
at different velocities in the two strings. The following conditions exist at the
boundary between the two strings:

1. Since the two ends of the strings are joined they must move up and down
together, i.e. the displacements of the strings at the boundary must be the same
at x = 0 for all times. This leads to the important result that the frequency ω

of the waves on both sides of the boundary must be the same. However, as the
velocities of the wave are different in the two strings, the wavelengths must
also be different since λ = 2πv/ω and ω is constant.

2. There must be continuity in the transverse restoring force at the boundary.
Otherwise a finite difference in the force would act on an infinitesimally small
mass of the string giving an infinite acceleration, which is unphysical. The
transverse force is equal to T (∂y/∂x) (cf. Section 5.4). Since the tension T is
constant, the slopes (∂y/∂x) of the strings on either side of the join must be
the same at x = 0 for all times.

We now use these boundary conditions to determine the relative amplitudes
and phases of the incident, transmitted and reflected waves. We let the incident
wave be

yI = A1 cos(ωt − k1x), (5.45)

where k1 is the wavenumber in the left-hand string. We chose the cosine form so
that the incident wave has its maximum value at the boundary, x = 0 when t = 0.
We write the transmitted wave as

yT = A2 cos(ωt − k2x), (5.46)

where k2 is the wavenumber in the right-hand string and the reflected wave as

yR = B1 cos(ωt + k1x). (5.47)

These waves are shown schematically in Figure 5.12. The resultant wave on the
left-hand string y1 is the sum of the incident and reflected waves while the resultant
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x

yI

x = 0
y1

yR

yTboundary

Figure 5.12 The incident, reflected and transmitted waves at the boundary of two strings
of different mass per unit length. The incident wave yI is shown as the dashed line on the
left-hand side of the boundary, while the transmitted wave yT is shown as the solid line
on the right-hand side of the boundary. The reflected wave yR is shown as the dotted line.
The solid line on the left-hand side of the boundary is the sum of the incident and reflected
waves, y1 = yI + yR.

wave on the right-hand string y2 is just the transmitted wave, i.e.,

y1 = yI + yR and y2 = yT, (5.48)

as shown in Figure 5.12. Thus

y1 = A1 cos(ωt − k1x) + B1 cos(ωt + k1x)

and

y2 = A2 cos(ωt − k2x).

Condition 1 gives y1 = y2 at x = 0. Hence

A1 cos(ωt − k1x) + B1 cos(ωt + k1x) = A2 cos(ωt − k2x),

where x = 0. Since this equation must be true for all times we can take t = 0 to
obtain

A1 + B1 = A2. (5.49)

Condition 2 gives ∂y1/∂x = ∂y2/∂x at x = 0, for all times. Hence

k1A1 sin(ωt − k1x) − k1B1 sin(ωt + k1x) = k2A2 sin(ωt − k2x),

where x = 0. This time we choose t = π/2ω, which gives

k1A1 − k1B1 = k2A2. (5.50)
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We want to find the ratio of amplitudes A2/A1 for the transmitted and incident
waves and also the ratio B1/A1 for the reflected and incident waves. Manipulating
Equations (5.49) and (5.50) to eliminate B1 gives

A2

A1
= 2k1

k1 + k2
= T12, (5.51)

where T12 is the transmission coefficient of amplitude. Similarly, manipulating
Equations (5.49) and (5.50) to eliminate A2 gives

B1

A1
= k1 − k2

k1 + k2
= R12, (5.52)

where R12 is the reflection coefficient of amplitude. The transmission coefficient
T12 is always a positive quantity and can have a value within the range 0 to 2.
The reflection coefficient R12 can have both positive and negative values within
the range +1 to −1. It also readily follows from Equations (5.51) and (5.52) that

T12 = 1 + R12. (5.53)

Equation (5.52) shows that the sign of B1/A1 depends on whether k2 is less or
greater than k1. If k2 < k1, the ratio B1/A1 is positive and the reflected wave is in
phase with the incident wave. This is the situation shown in Figure 5.12. If k2 > k1,
the ratio B1/A1 is negative. A change of sign between B1 and A1 is equivalent to a
phase difference of π between the reflected and incident waves. However, Equation
(5.51) shows that the ratio A2/A1 will always be positive and so the transmitted
wave will always be in phase with the incident wave.

We can see the physical meaning of Equations (5.51) and (5.52) more easily
if we write them in terms of mass per unit length µ. Using Equations (5.15) and
(5.32) we have v = ω/k = √

T /µ. Since the tension T and the frequency ω of
the waves are the same in both strings, the wavenumber k is directly propor-
tional to the square root of the mass per unit length

√
µ. Hence, Equation (5.51)

becomes

A2

A1
= 2

√
µ1√

µ1 + √
µ2

, (5.54)

and Equation (5.52) becomes

B1

A1
=

√
µ1 − √

µ2√
µ1 + √

µ2
. (5.55)

As the mass per unit length of the right-hand string increases, we have in the limit
µ2 → ∞, the situation of the wave encountering a rigid wall. In that case, Equation
(5.54) shows that A2 = 0 and Equation (5.55) shows that B1 = −A1. Physically
this means that if the wave encounters a rigid wall, there is no transmitted wave
and the wave is totally reflected with a phase change of π between the incident
and reflected waves.
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Worked example

Light of wavelength 584 nm in air is incident upon a block of glass of refractive
index equal to 1.50. Determine (a) the velocity, (b) the frequency and (c) the
wavelength of the light within the glass block.

Solution

(a) The velocity of the light in the glass v is related to the velocity of the light
in air c by the refractive index n of the glass, where n = c/v. Hence,

v = 3.0 × 108

1.50
= 2.0 × 108 m s−1.

(b) The frequency of the light in the glass ν is the same as in air. Hence,

ν = c

λ
= 3.0 × 108

584 × 10−9
= 5.14 × 1014 Hz.

(c) λglass = λair

n
= 584 × 10−9

1.50
= 389 nm.

Worked example

The reflection of a wave at the boundary of two strings with different values
of mass per unit length can be reduced by inserting between them, a third
piece of string of appropriate length and mass per unit length. Assume that
the wavenumbers in the three strings are k1, k2 and k3, respectively, and that
k3 > k2 > k1. Deduce an expression for the required length L of the intermediate
string and find an expression for k2 in terms of k1 and k3.

Solution
When a wave encounters the discontinuity at the boundary between two dif-
ferent strings, there will be a reflected wave. However, by inserting a third
string between them, there will be two discontinuities each of which produces
a reflection. By suitable choice of the length L of the intermediate string, it
is possible to arrange for the two reflected waves to cancel each other by
destructive interference. In Figure 5.13 the incident wave y1, and transmitted
waves y2 and y3 are represented. Also represented are the wave y4 reflected
at the first boundary (x = 0), the wave y5 reflected at the second boundary
(x = L) and the subsequently transmitted wave y6. Both the reflected waves
y4 and y5 suffer a phase change of π upon reflection since k3 > k2 > k1. How-
ever, wave y5 (and hence wave y6) has to travel the additional distance 2L

before the two waves y4 and y6 meet again at x = 0. Hence there will be a
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R12, T12, T21 R23

y1 y2 y3

y4

y5y6

 string 1 string 3string 2

x = 0 x = L

Figure 5.13 Two long strings of different mass per unit length connected by an inter-
mediate piece of string. Also indicated are the incident, transmitted and reflected waves
at the two boundaries of the three strings.

phase difference of 2π × 2L/λ2 between them, where λ2 is the wavelength
in the middle string. Maximum destructive interference will occur when this
phase difference is equal to π (see also Section 7.1), giving L = λ2/4. For
complete cancellation, the amplitudes of waves y4 and y6 should be equal. If the
amplitude of incident wave y1 is A1, the amplitude A4 of reflected wave y4 will
be A4 = R12A1, where R12 is the reflection coefficient at the first boundary. The
amplitude A5 of reflected wave y5 will be A5 = R23A2 = R23T12A1, where R23

is the reflection coefficient at the second boundary and T12 is the appropriate
transmission coefficient at the first boundary. The amplitude A6 of wave y6

will be A6 = T21A5 = T21R23T12A1, where T21 is the appropriate transmission
coefficient at the first boundary. Hence

A6

A4
= T12R23T21

R12
.

If we make the assumption that the transmission coefficients T12 and T21 are
equal to unity, which is a good assumption in many practical situations, then

A6

A4
= R23

R12
.

Putting A6 = A4 as required and substituting for R12 = (k1 − k2)/(k1 + k2)

and R23 = (k2 − k3)/(k2 + k3) leads to k2 = √
k1k3. (In this analysis we have

neglected the contributions of waves that suffer further reflections. When all
of these contributions are taken into account identical solutions are obtained.)

Analogous results of the above example have importance in many practical
applications. For example, a camera lens will contain a number of different glass
components and therefore many surfaces, i.e. boundaries through which the light
has to pass. In order to minimise losses due to reflection, each surface is coated
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with a layer of appropriate thickness and refractive index. The refractive index
of a medium is defined as n = c/v, where c and v are the velocities of the light
in vacuum and in the medium, respectively. (In practice, the velocity of light in
vacuum can be replaced by the velocity of light in air.) Since v = ω/k and ω

is constant, the wavenumber k is directly proportional to the refractive index, i.e.
k ∝ n. In an analogous way to the worked example above, the thickness of the
anti-reflection coating should be λ/4, where λ is the wavelength of the light in
the coating , and its refractive index should be equal to

√
nairnglass. The value

of nair is 1.0 and a typical value of nglass is 1.5. Hence the refractive index of
the coating should have the value

√
1.5, and for light of wavelength 550 nm, its

width should be 550/
√

1.5 = 450 nm. Another practical application of reducing
reflection occurs in the use of ultrasonic waves to probe the human body for
medical investigation. Here, the source of the ultrasonic waves is not placed in
direct contact with the patient’s skin. Instead a layer of suitable medium is placed
between the two. The width of this intermediate layer is chosen to be equal to
one-quarter of the wavelength of the ultrasonic waves in the medium and this acts
to maximise the transmission of the waves into the body tissue.

5.8 WAVES IN TWO AND THREE DIMENSIONS

So far we have considered waves that propagate in one dimension. We now
turn our attention to waves that propagate in two or three dimensions. An
example of a two-dimensional wave is a ripple on a pond while an example of a
three-dimensional wave is the sound wave produced by a fired gun. We start by
considering waves on a taut membrane which is the two-dimensional analogue
of the taut string. The membrane has a mass per unit area σ and is stretched
uniformly under surface tension S. This tension is the force that would appear
on either side of a cut in the membrane and acts in the direction at right angles
to the cut. The surface tension S has units of force per unit length. Figure 5.14
shows a small element of the membrane with sides of length δx and δy. At
equilibrium this element lies in the x-y plane. The forces acting at each end of

Sdy

y

Sdy

Sdx

Sdx
x

z
displaced element 

of membrane

Figure 5.14 An element δxδy of a taut membrane, showing the element at its equilibrium
position and at a displaced position when a wave passes by.
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the element are either Sδx or Sδy with directions as indicated in Figure 5.14.
This figure also shows the element at some instant of time as the wave passes by.
The element is displaced in the z-direction and becomes curved. As for the taut
string case (Section 5.4), it is assumed that the element of the membrane only
moves transversely and not sideways which is a good approximation for small
displacements. We follow an analogous treatment to that of the taut string. If the
displacement of the membrane element is small, the surface tension S can be
assumed to be constant. Hence the magnitudes of the forces acting at each end of
the element remain the same although the directions of these forces will change.
This can be seen more clearly when we take a side view of the membrane element
as in Figure 5.15, which shows the curvature of the element in the x-z plane.
From comparison with the one-dimensional result (5.29), we see that the resultant
force acting on the element in the x-z plane is given by

Sδy

[(
∂z

∂x

)
x

+
(

∂2z

∂x2

)
δx −

(
∂z

∂x

)
x

]
= Sδy

(
∂2z

∂x2

)
δx, (5.56)

x
x

Sdy

z

Sdy
Sdy sinq

Sdy sin(q + dq)

x + dx

q

q + dq

Figure 5.15 A side view, in the x-z plane, of the displaced element of the taut membrane
of Figure 5.14, showing the forces acting upon it and the directions of the forces.

where we take θ = (∂z/∂x). This force acts in the z-direction. The membrane is
also curved in the y-z plane and the resultant force due to this curvature is given by

Sδx

[(
∂z

∂y

)
y

+
(

∂2z

∂y2

)
δy −

(
∂z

∂y

)
y

]
= Sδx

(
∂2z

∂y2

)
δy. (5.57)

Thus the total force acting on the element in the z-direction is equal to

Sδy
∂2z

∂x2
δx + Sδx

∂2z

∂y2
δy.
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Since the mass of the element is σδxδy, we have as the equation of motion

σδxδy
∂2z

∂t2
= Sδy

∂2z

∂x2
δx + Sδx

∂2z

∂y2
δy, (5.58)

giving

∂2z

∂x2
+ ∂2z

∂y2
= σ

S

∂2z

∂t2
= 1

v2

∂2z

∂t2
. (5.59)

Equation (5.59) is the two-dimensional wave equation and we identify v as the
velocity of the wave, where v2 = S/σ .

For the case of a sinusoidal wave travelling in one dimension, we can express
the wave in the form

y(x, t) = A cos(kx − ωt). (5.16)

For a sinusoidal wave travelling in two dimensions, the corresponding solution of
Equation (5.59) is

z(x, y, t) = A cos(k1x + k2y − ωt). (5.60)

Substituting this solution into Equation (5.59) gives

k2
1 + k2

2 = ω2

v2
, (5.61)

and hence

v = ω

(k2
1 + k2

2)
1/2

= ω

k
, (5.62)

where k = (k2
1 + k2

2)
1/2 and is called the wavenumber. The wave velocity is equal

to the angular frequency divided by the wavenumber.
We now explore the physical meaning of the solution (5.60) and the two-

dimensional wave that it represents. Figure 5.16 is a pictorial representation of

Figure 5.16 Pictorial representation of a two-dimensional wave showing the crests and
troughs.
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a portion of this travelling wave at some instant of time, and shows its crests and
troughs. Figure 5.17 is a another view of the wave, this time from above looking
down onto the x-y plane. Again it is a snapshot taken at a particular instant of time
which we shall take to be t = 0 for convenience. The displacement z is at right
angles to the x-y plane. Clearly, z varies with the independent variables x and y.
However, Equation (5.60) shows that z(x, y)t=0 will have the same value for all
combinations of x and y for which (k1x + k2y) = constant. Moreover, z(x, y)t=0

will have its maximum value when (k1x + k2y) = 2πn, when n = 1, 2, 3, . . . .
Therefore, along the x-axis (where y = 0) in Figure 5.17, there will be a series
of maxima at x = 2πn/k1, separated by a distance of 2π/k1. Similarly along the
y-axis (where x = 0), there will be a series of maxima at y = 2πn/k2, separated
by a distance of 2π/k2. We can join up these sets of maxima matching the val-
ues of n as shown in Figure 5.17. Along each of these straight lines we have the
condition (k1x + k2y) = 2πn, for the respective value of n. Hence, z(x, y)t=0 has
a constant value (and a constant phase) along each of these straight lines, which
are called wavefronts . In this case they correspond to the maxima of the wave.
(Halfway between these maxima lay the minima or troughs of the wave.) Since
the wavefronts are straight, such a wave is called a plane wave. As time increases,
these wavefronts travel at velocity v given by Equation (5.62). The direction of
travel is indicated in Figure 5.17 and is at right angles to the wavefronts. We can
find the direction of travel in the following way. A wavefront from Figure 5.17 is
reproduced in Figure 5.18, and is denoted by the line PQ . For a wavefront we have
the condition k1x + k2y = 2πn. We rearrange this into the form of the equation of
a straight line y = mx + c. Then,

y = −k1

k2
x + 2πn

k2
. (5.63)

Since m = tan φ, where φ is given in Figure 5.18, we have

tan φ = −k1

k2
.

2p / k2

n = 0

2

1

x

21

y

2p/k1

v

Figure 5.17 Snapshot of a two-dimensional wave, looking from above onto the xy plane.
The solid lines indicate the maxima (crests) of the wave while the dotted lines indicate
the minima (troughs). Along these lines, which are called wavefronts, the amplitude and
phase of the wave are constant. The direction of travel of the wave is at right angles to the
wavefronts.
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wavefront

α
φ

0 Q

P

y

x

v

Figure 5.18 A wavefront of a two-dimensional wave showing the direction of travel of the
wave characterised by the angle α.

The direction of travel, as indicated by the angle α in Figure 5.18, is at right angles
to the wavefront and hence, α = (φ − π/2). Since

tan(φ − π/2) = − 1

tan φ
,

tan α = k2

k1
. (5.64)

We see that k1 and k2 determine the direction of travel as well as the velocity v.

5.8.1 Waves of circular or spherical symmetry

In our discussion of two-dimensional waves in Section 5.8 we defined the posi-
tion of the membrane element in terms of its x- and y-coordinates. We considered
the displacement z of this element in a direction at right angles to the x-y plane,
describing the wave as z = z(x, y, t). Moreover, we considered waves with straight
wavefronts. In some situations the wavefronts are circular as in outgoing ripples on
a pond. Then it is more appropriate to use the polar coordinate system illustrated
in Figure 5.19. In this coordinate system a point P is specified in terms of r, θ

r

x

P

z

q

y

Figure 5.19 The cylindrical polar coordinate system used to describe waves with circular
wavefronts. The point P is specified in terms of r, θ and z, which are independent variables.
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and z, which are independent variables. Again, we specify the displacement of the
element by z. For the particular case of circular waves, z has the same value for all
values of θ and so we only need to consider how z depends on r and t . Hence we
can express the displacement as z = z(r, t). We can obtain the wave equation for
circular waves from Equation (5.59) in the following way. We have z(r) = z(x, y)

with the condition that r2 = x2 + y2. Then

∂z

∂x
=

(
∂z

∂r

) (
∂r

∂x

)
,

and

∂2z

∂x2
=

(
∂2z

∂r2

) (
∂r

∂x

)2

+
(

∂z

∂r

) (
∂2r

∂x2

)
.

We have

∂r

∂x
= x

(x2 + y2)1/2
= x

r
,

and

∂2r

∂x2
= y2

(x2 + y2)3/2
= y2

r3
.

Thus

∂2z

∂x2
=

(
∂2z

∂r2

)(
x

r

)2

+
(

y2

r3

)(
∂z

∂r

)
.

Similarly,

∂2z

∂y2
=

(
∂2z

∂r2

) (
y

r

)2

+
(

x2

r3

) (
∂z

∂r

)
.

Substituting for ∂2z/∂x2, ∂2z/∂y2 and ∂2z/∂t2 in Equation (5.59) we obtain

∂2z

∂r2
+ 1

r

∂z

∂r
= 1

v2

∂2z

∂t2
. (5.65)

This is the wave equation for two-dimensional waves of circular symmetry. Its
solutions are special functions called Bessel functions . However, at sufficiently
large values of r the second term on the left-hand side of Equation (5.65) becomes
negligible compared with the first. The equation then approximates to

∂2z

∂r2
= 1

v2

∂2z

∂t2
. (5.66)
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This equation has the same form as the one-dimensional wave equation and has
analogous solutions such as

z(r, t) = A cos(kr − ωt), (5.67)

where v now corresponds to the radial velocity dr/dt . Hence, circular waves ema-
nating from a point source become plane waves at large distances from the source.

For the case of a wave propagating in a three-dimensional medium, e.g. sound
waves in air, the wave equation becomes

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= 1

v2

∂2ψ

∂t2
, (5.68)

cf. Equation (5.59). Here ψ represents the change in the relevant physical quantity
that occurs as the wave passes by. For example, in the case of a sound wave ψ

would correspond to changes in the local pressure of the gas. ψ is a function of
the independent variables x, y, z and t , i.e. ψ = ψ(x, y, z, t). Equation (5.68) has
solutions such as

ψ = A sin(k1x + k2y + k3z − ωt), (5.69)

where k1, k2 and k3 are constants, cf. Equation (5.60), and the velocity v is given
by

v = ω

(k2
1 + k2

2 + k2
3)

1/2
, (5.70)

cf. Equation (5.62). Again we can have situations where there is a high degree
of symmetry. For example, we produce spherical outgoing sound waves when we
clap our hands. For such spherical waves ψ depends only on the radial distance
r = (x2 + y2 + z2)1/2 and the time t . Hence we can write ψ = ψ(r, t) for which
it can be shown that the wave equation (5.68) is

∂2ψ

∂r2
+ 2

r

∂ψ

∂r
= 1

v2

∂2ψ

∂t2
. (5.71)

To find solutions of Equation (5.71), we consider the quantity

u(r, t) = rψ(r, t) (5.72)

instead of ψ(r, t). Then

∂u

∂r
= r

∂ψ

∂r
+ ψ, giving

∂ψ

∂r
= 1

r

[
∂u

∂r
− u

r

]
; (5.73a)

∂2u

∂r2
= r

∂2ψ

∂r2
+ 2

∂ψ

∂r
, giving

∂2ψ

∂r2
= 1

r

[
∂2u

∂r2
− 2

r

(
∂u

∂r
− u

r

)]
; (5.73b)
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and

∂2ψ

∂t2
= 1

r

∂2u

∂t2
. (5.73c)

Substituting Equation (5.73) into the wave equation (5.71) gives

∂2u

∂r2
= 1

v2

∂2u

∂t2
. (5.74)

This is the one-dimensional wave equation in the variable u. It is satisfied by
solutions of the form u = A cos(ωt − kr), giving

ψ = A

r
cos(ωt − kr). (5.75)

This expression for ψ shows that the amplitude of the wave (A/r) decreases as
1/r . For a one-dimensional wave the rate of energy flowing across a line at right
angles to the direction of travel is proportional to the square of the wave amplitude,
cf. Equation (5.43). For a spherical wave, the energy flow crossing unit area, is
again proportional to the square of the amplitude, and hence is proportional to
1/r2. We can see this result in a different way. As a spherical wavefront expands,
the energy in the wave is spread over an increasingly large area. The area of a
spherical wavefront is proportional to r2 and hence the energy flow crossing unit
area is proportional to 1/r2.

PROBLEMS 5

5.1 A transverse wave travelling along a string is described by the function y =
15 cos(0.25x + 75t), where x and y are in millimetres and t is in seconds. Find the
amplitude, wavelength, frequency and velocity of the wave. In what direction is the
wave travelling?

5.2 One end of a long taut string is moved up and down in SHM with an amplitude of
0.15 m and a frequency of 10 Hz. At time t = 0 the end of the string (at x = 0) has
its maximum upward displacement. The resultant wave travels down the string in the
positive x-direction with a velocity of 50 m s−1. Obtain an equation describing the
wave.

5.3 .(a) Show that the following are solutions to the one-dimensional wave equation

∂2y

∂t2
= v2 ∂2y

∂x2
.

(i) y = A sin 2πν(t − x/v), (ii) y = A sin(2π/λ)(x + vt), (iii) y = A sin 2π(x/
λ − t/T ), (iv) y = Aei(ωt+kx), and (v) y = A cos(ω1t − k1x) + B cos(ω2t − k2x),
where ω1/k1 = ω2/k2 = v.

(b) Show that ψ = A sin(k1x + k2y + k3z − ωt) is a solution to the three-dimensional
wave equation

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
= 1

v2

∂2ψ

∂t2
,

obtaining the relationship between k1, k2, k3, ω and v.



134 Travelling Waves

5.4 What, if any, are the differences between the waves described by:
(a) y1 = A cos(ωt − kx) and y2 = A cos(kx − ωt);
(b) y1 = A sin(ωt − kx) and y2 = A sin(kx − ωt)?

5.5 A travelling wave has the profile described by y(x, t) = A exp[−(x − vt)2/a2], where
A and a are constants. Show that the profile of the wave remains unchanged a time δt
later where v = dx/dt � δx/dt . Show that this is a general result for any function of
(x − vt) or (x + vt), i.e. f (x − vt) or g(x + vt).

5.6 .(a) Calculate the frequencies of:
(i) a radio wave of wavelength 1500 m;
(ii) a visible photon of wavelength 500 nm;
(iii) an X-ray of wavelength 0.1 nm;
(iv) an electromagnetic wave of wavenumber 2.1 m−1;
(v) an ultrasonic sound wave that has a wavelength of 5.0 mm.
(b) Calculate the wavelengths of sound waves of frequencies 20 Hz and 15 kHz which

are typical limits of a person’s hearing. Compare the wavelength of a musical note
of frequency 440 Hz with the typical size of a musical instrument. (Take the
velocity of sound in air to be 340 m s−1.)

5.7 (a) The velocity v of a wave travelling along a wire depends on the mass M of the wire
and its length L and on the tension T applied to it. Use the method of dimensions to
show that v ∝ √

T L/M . (b) Given that the six strings of a guitar have the same length
and are held under similar tensions, say which of the strings will have the largest wave
velocity.

5.8 (a) A horizontal wire that is 25 m long and has a mass of 100 g is held under a tension
of 10 N. A sinusoidal wave of frequency 25 Hz and amplitude 15 mm travels along the
wire. Calculate (i) the wave velocity along the wire and (ii) the maximum transverse
velocity of any particle of the wire. (b) A square of elastic sheet of dimensions 0.75 m
by 0.75 m has a mass of 125 g. A force of 2.5 N is applied to each of the four edges.
What is the velocity of waves on the sheet?

5.9 A rope of length L hangs from a ceiling. (a) Show that the velocity v of a transverse
wave at any point on the rope is independent of the mass and length of the rope
but does depend on the distance y of the point from the bottom of the rope and that
v(y) = √

gy. (b) A rope of length 2.5 m hangs from a ceiling. A transverse wave is
initiated at the bottom of the rope. Calculate the total time it takes for the wave to
travel to the top of the rope and back to the bottom. (Assume g = 9.81 m s−2.)

5.10 A long string is connected to an electrically driven oscillator so that a transverse
sinusoidal wave is propagated along the string. The string has a mass per unit length
of 30 g m−1 and is held under a tension of 12 N. (a) Calculate the power that must be
supplied to the oscillator to sustain the propagation of the wave if it has a frequency
of 150 Hz and an amplitude of 1.5 cm. (b) What will be the power required (i) if the
frequency is doubled and (ii) if the amplitude is halved?

5.11 .(a) A source emits waves isotropically. If the wave intensity is I1 at a radial distance
r1 from the source, what will be the intensity I2 at a distance r2?

(b) The intensity of sound waves from a siren is 25 W m−2 at distance of 1.0 m
from the siren. Assuming that the sound waves are emitted isotropically, at what
distance will the sound intensity be equal to 1.0 W m−2 which is close to the
‘threshold of pain’?

5.12 The total energy radiated by the Sun is approximately 4 × 1026 W. Estimate the solar
power falling on a square metre of the Earth’s surface at midday, neglecting any
absorption in the atmosphere. (Take the distance from the Earth to the Sun to be
1.5 × 108 km.) What is the corresponding value at the surface of Jupiter which you
can assume is five times further away from the Sun?

5.13 A long string of mass 1.0 g cm−1 is joined to a long string of mass 4.0 g cm−1 and the
combination is held under constant tension. A transverse sinusoidal wave of amplitude
3.0 cm and wavelength 25 cm is launched along the lighter string. (a) Calculate the
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wavelength and amplitude of the wave when it is travelling along the heavier string.
(b) Calculate the fraction of wave power reflected at the boundary of the two strings.

5.14 (a) Light falls normally on a glass surface. What fraction of the incident light intensity
is reflected if the refractive index n of the glass is 1.5? (b) Magnesium fluoride (MgF2)
is used as an anti-reflection coating for glass lenses and has a refractive index of 1.39.
What thickness of MgF2 would be required at a wavelength λ of 550 nm for glass
with n = 1.5? Explain why camera lenses usually have a characteristic purple colour.
(c) Suppose that you wanted to maximise reflection at λ = 550 nm. What thickness of
MgF2 would be required for this purpose?

5.15

aa

m

m

m

yr−1
yr+1

yr

q1

q2

(a) The figure shows three masses that lie within a long line of identical masses of
mass m connected by identical elastic strings under constant tension T with separation
a. Show that the equation of motion of the central mass can be written as

∂2yr

∂t2
= T

m

[
(yr+1 − yr)

a
− (yr − yr−1)

a

]

where y is the transverse displacement from equilibrium which is assumed to be small.
(b) Suppose that the separation becomes infinitesimally small, a ≈ δx with δx → 0,
so that x becomes a continuous variable and the above equation can be written as

∂2y

∂t2
= T

m

[
y(x + δx) − y(x)

δx
− y(x) − y(x − δx)

δx

]
.

Apply a Taylor expansion to the right-hand side of this equation to show that

∂2y

∂t2
= T

µ

∂2y

∂x2

where µ = m/δx.

[
Taylor expansion : y(x ± δx) = y(x) ± δx

∂y

∂x
+ 1

2
(±δx)2 ∂2y

∂x2
.

]





6
Standing Waves

In this chapter we turn our attention to standing waves. These are the kind of
waves that occur when we pluck a guitar string. Indeed musical instruments provide
a rich variety of standing waves. String instruments are plucked or bowed to set
up standing waves on the strings. Blowing into the mouthpiece of a woodwind
or brass instrument sets up a standing sound wave in the tubes that form the
instrument. Timpani are struck to form standing waves on the drum skins. The
musical instrument transforms the vibrations of the standing waves into sound
waves that then propagate through the air. We will find that a standing wave can
be considered as the superposition of two travelling waves of the same frequency
and amplitude travelling in opposite directions. We will see that standing waves
are the normal modes of a vibrating system and that the general motion of the
system is a superposition of these normal modes. This will give us the energy of
a vibrating string. It will also introduce us to the powerful technique of Fourier
analysis.

6.1 STANDING WAVES ON A STRING

We shall explore the physical characteristics of standing waves by considering
transverse waves on a taut string. The string is stretched between two fixed points,
which we take to be at x = 0 and x = L, respectively. The transverse displacement
of the string is in the y-direction. An example of such a standing wave is illustrated
in Figure 6.1. Snapshots of the string at successive instants of time are shown in
Figure 6.1(a)–(e), while Figure 6.1(f) shows these individual snapshots on a single
set of axes. The displacement y is always zero at x = 0 and x = L since the
string is held fixed at those points. However, midway between the fixed ends we
can see that the displacement of the string is also zero at all times. This point is
called a node. Midway between this node and each end point the wave reaches its
maximum displacement. These points are called antinodes . The positions of these

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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x

y
(a)

(b)

(c)

(d)

(e)

(f)

x = 0 x = Lx = L/2

Figure 6.1 An example of a standing wave on a taut string. (a)–(e) Snapshots of the string
at successive instants of time, while (f) shows these individual snapshots on a single set of
axes. The displacement y is always zero at x = 0 and x = L, since the string is held fixed
at those points. Midway between the fixed ends the displacement of the string is also zero
at all times and this point is called a node. Midway between the node and each end point
the wave reaches its maximum displacement and these points are called antinodes .

maxima and minima do not move along the x-axis with time and hence the name
standing or stationary waves. When the string vibrates, all particles of the string
vibrate at the same frequency. Moreover they do so in SHM about their equilibrium
positions, which is the line along which the string lies when at rest. However, as
shown in Figure 6.1, the amplitude of vibration of the particles varies along the
length of the string. These characteristics suggest that the displacement y can be
represented by

y(x, t) = f (x) cos(ωt + φ). (6.1)
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The function f (x) describes the variation of the amplitude of vibration along the
x-axis. The function cos(ωt + φ) describes the SHM that each particle of the string
undergoes. If we choose the maximum displacements of the particles to occur at
t = 0, then the phase angle φ is zero and

y(x, t) = f (x) cos ωt. (6.2)

[Imposing the condition φ = 0 is equivalent to saying that initially, at t = 0, the
string has zero velocity, i.e. from Equation (6.1)

(
∂y

∂t

)
t=0

= −ωf (x) sin φ = 0 (6.3)

implies φ = 0.] Importantly, we have written the displacement y as the product of
two functions in Equation (6.2): one that depends only on x and one that depends
only on t . We now substitute this solution into the one-dimensional wave equation

∂2y

∂t2
= v2 ∂2y

∂x2
. (5.23)

Differentiating Equation (6.2) twice with respect to t and twice with respect to x,
we obtain

∂2y

∂t2
= −ω2f (x) cos ωt,

∂2y

∂x2
= ∂2f (x)

∂x2
cos ωt,

and substituting these expressions into the one-dimensional wave equation
leads to

∂2f (x)

∂x2
= −ω2

v2
f (x). (6.4)

We can compare this result with the equation of SHM:

d2x

dt2
= −ω2x, (1.6)

which has the general solution

x = A cos ωt + B sin ωt. cf. (1.15)

Equations (6.4) and (1.6) have the same form except the variable t in Equation
(1.6) is replaced by the variable x in Equation (6.4) and x has been replaced by
f (x). Thus it follows that the general solution of Equation (6.4) is

f (x) = A sin
(ω

v
x
)

+ B cos
(ω

v
x
)

, (6.5)
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where A and B are constants that are determined by the boundary conditions . In
this case the boundary conditions are f (x) = 0 at x = 0 and at x = L. The first
condition gives B = 0. The second condition gives

A sin

(
ωL

v

)
= 0, (6.6)

which is satisfied if

ωL

v
= nπ, (6.7)

where n = 1, 2, 3, . . . . [Since we are not interested in the trivial solution f (x) ≡ 0,
we exclude the value n = 0.] Thus, ω must take one of the values given by Equation
(6.7), and so we write it as

ωn = nπv

L
, (6.8)

where for each value of n we have an associated ωn. Substituting for ω = ωn in
Equation (6.5) and recalling that B = 0, we obtain

fn(x) = An sin
(nπ

L
x
)

. (6.9)

For each value of n we have an associated function fn(x) that is sinusoidal in
shape with an associated amplitude An. Substituting the solution (6.9) for f (x)

and Equation (6.8) for ω = ωn in Equation (6.2) we finally obtain

yn(x, t) = An sin
(nπ

L
x
)

cos ωnt. (6.10)

This equation describes the standing waves on the string, where each value of
n corresponds to a different standing wave pattern. The standing wave patterns
are alternatively called the modes of vibration of the string. As we will see in
Section 6.4 these are the normal modes of the vibrating string.

The functions fn(x) = An sin (nπx/L) for n = 1 to 4 are plotted in Figure
6.2(a)–(d), respectively. For the purpose of these figures the amplitudes of the
four standing waves have been taken to be the same. For n = 1 we have

f1(x) = A1 sin
(π

L
x
)

,

which gives the amplitude variation shown in Figure 6.2(a). This is the fundamental
mode or first harmonic of the string; n = 2 corresponds to the second harmonic,
n = 3 corresponds to the third harmonic, etc. We see that the number of antinodes
in the nth harmonic is equal to n. The corresponding angular frequencies ωn of
the standing waves are given by Equation (6.8) and are πv/L, 2πv/L, 3πv/L and
4πv/L, respectively. The time period T for a standing wave pattern to exactly to
reproduce its shape is given by

T = 2π

ωn

= 2L

nv
. (6.11)
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(a)

(b)

(c)

(d)

Fundamental
(1st harmonic)

2nd harmonic

3rd harmonic

4th harmonic

x = 0 x = L

Figure 6.2 The first four harmonics for standing waves on a taut string. The first harmonic
is also called the fundamental. These standing waves are described by the function fn(x) =
An sin(nπx/L) with n = 1 − 4. The number of antinodes in each standing wave is equal to
the respective value of n.

We again define the wavelength λ of a standing wave as the repeat distance of
the wave pattern. Since v = νλ and ω = 2πν, we can substitute for v and ω in
Equation (6.11) to obtain

λn = 2L

n
(6.12)

where λn is the wavelength of the nth standing wave. If we write this equation as

nλn

2
= L, (6.13)

we see that we will obtain a standing wave only if an integral number of
half-wavelengths fits between the two fixed ends of the string, as shown in
Figure 6.2. Each standing wave with wavelength λn has a wavenumber kn, which
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from Equation (5.13) is given by

kn = 2π

λn

.

Since λn = 2L/n, Equation (6.13), we also have

kn = nπ

L
. (6.14)

Using this last relationship we can write Equation (6.10) as

yn(x, t) = An sin knx cos ωnt, (6.15)

which is an alternative expression for a standing wave. The angular frequency of
the fundamental, with n = 1, is

ω1 = πv

L
, (6.16)

and its frequency, ν1 = ω1/2π, is

ν1 = v

2L
. (6.17)

Since the velocity of a wave on a taut string is given by

v =
√

T

µ
, (5.32)

Equation (6.17) gives

ν1 = 1

2L

√
T

µ
. (6.18)

This equation shows how the fundamental frequency of a taut string depends on its
length L, the tension T in the string and its mass per unit length µ. We can readily
relate these results to stringed instruments. For example, a guitar has six strings of
the same length and these are held under approximately the same tension. However,
the strings have different values of mass per unit length and so their fundamental
frequencies are different: the larger the mass per unit length the lower the note.
Each of the strings is tuned by slightly varying the tension in the strings. The
musician then plays the different notes by pressing the strings against the frets
on the fingerboard to vary the length of the vibrating string. Clearly the size of a
musical instrument affects the frequency or pitch of the sound it produces. This
is very evident from the violin family: violin, viola, cello and double bass. These
instruments steadily increase in size and produce notes of progressively lower pitch.
In an analogous way the pipes of an organ steadily increase in size to produce notes
of lower frequency.
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As we see from Equation (6.8), the frequencies of all the harmonics of a taut
string are exact multiples of the fundamental frequency and form a harmonic series .
For most vibrating systems this is not the case. These will also vibrate at a series of
higher frequencies in addition to the fundamental frequency. These higher frequen-
cies are called overtones . However, in general, the frequencies of these overtones
will not be an exact multiple of the fundamental: they are not harmonic. A bell,
for example, will have overtones whose frequencies are not exact multiples of
the fundamental. When the bell is struck, the overtone frequencies will be heard
in addition to the fundamental. The skill of the bell maker is to ensure that the
combination of the fundamental and the overtones produces a sound that is not
discordant to the ear. (Of course, the term overtone can also be applied to a taut
string but in this case the overtones are harmonic.)

We have used the example of a taut string to explore the physical characteristics
of standing waves. However, standing waves occur in many different physical
situations and the ideas we have been discussing are important to a wide range of
physical phenomena. In a microwave oven, electromagnetic waves reflect from the
walls of the oven to form standing wave patterns in the oven compartment. This
means that there will inevitably be places in the compartment where the intensity
of the microwave radiation is reduced and the food will not be properly cooked. To
reduce the effects of these ‘cold spots’ the food is placed on a rotating turntable. In
a laser, the light forms a standing wave between the two mirrors placed at the ends
of the laser tube. In this way the wavelength of the laser light is well defined, i.e.
monochromatic. In a very different example, in the realm of quantum mechanics,
the discrete energy levels of atoms can be thought of as the standing-wave solutions
of the Schrödinger equation.

Worked example

The Pirastro Eudoxa A string of a cello has a linear density µ = 1.70 g m−1

and a length L = 0.70 m. The tension in the string is adjusted so that the
fundamental frequency is 220 Hz. (i) What is the tension in the string? (ii)
A weight of mass m is suspended from the string. What mass would produce
the same tension? (iii) What is the wavelength of the sound from the string?
(Take the velocity of sound in air to be 340 m s−1 and the acceleration due to
gravity to be 9.81 m s−2.)

Solution

(i) λν = v and λ/2 = L for the fundamental frequency, giving v = 2Lν.

T = µv2 = µ(2Lν)2 = 1.70(2 × 0.70 × 220)2

1000
= 161 N.

(ii) m = T /g = 16.4 kg. This result illustrates the fact that stringed instru-
ments are subject to large forces.

(iii) The frequency of the sound wave is the same as the frequency of the
vibrating string. Hence, the wavelength of the sound wave is equal to



144 Standing Waves

340/220 = 1.54 m. This is different to the wavelength of the fundamental
of the string (= 2L = 1.40 m) because of the different wave velocities in
the string and in air.

Worked example

A helium-neon laser tube has a length of 0.40 m and operates at a wavelength
of 633 nm. What is the difference in frequency between adjacent standing
waves in the tube?

Solution
The light in a laser tube forms a standing wave between two mirrors that
are placed at either end of the tube, which acts as a resonant cavity . Then
nλ/2 = L, where n is the number of the standing wave (mode), λ is the
wavelength and L is the length of the tube. Since λ 	 L, n will be very large,
≈ 1 × 106. Using λν = c,

νn = nc

2L
and νn+1 = (n + 1)c

2L
.

Hence

νn+1 − νn = c

2L
= 3 × 108

0.80
= 3.75 × 108 Hz.

6.2 STANDING WAVES AS THE SUPERPOSITION OF TWO
TRAVELLING WAVES

In Section 5.3, we saw that the general solution of the one-dimensional wave
equation is

y = f (x − vt) + g(x + vt). (5.4)

A specific example is

y = A

2
sin

2π

λ
(x − vt) + A

2
sin

2π

λ
(x + vt) (6.19)

or, in terms of wavenumber k = 2π/λ and angular frequency ω = kv,

y = A

2
sin(kx − ωt) + A

2
sin(kx + ωt). (6.20)

The first term in the right-hand side of this equation represents a sinusoidal wave of
amplitude A/2 travelling in the positive x-direction and the second term represents
a sinusoidal wave of amplitude A/2 travelling in the negative x-direction. Both
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waves have the same angular frequency. Using the identity

sin(α + β) + sin(α − β) = 2 sin α cos β (6.21)

we obtain

y = A

2
sin(kx − ωt) + A

2
sin(kx + ωt) = A sin kx cos ωt. (6.22)

The right-hand side of Equation (6.22) has an identical form to Equation (6.15),
which we obtained for a standing wave on a taut string. Hence, we have the
important result that a standing wave is the superposition of two travelling waves
of the same frequency and amplitude travelling in opposite directions. This is
illustrated in Figure 6.3, which shows the two travelling waves at successive instants
of time separated by T /8 where T is the period of the wave. The wave travelling
towards the right is represented by the thin continuous curve and the wave travelling
towards the left is represented by the dotted curve. The arrows attached to these
curves indicate the directions of travel. (At some instants of time the two waves lie
on top of each other.) The thick continuous curve is the sum or superposition of the
two travelling waves, i.e. the resultant standing wave. Its overall shape is just like

t = 0

t = T/8

t = T/4

t = 3T/8

t = T/2

Figure 6.3 Two travelling waves of the same frequency and amplitude travelling in opposite
directions, at successive instants of time. The wave travelling towards the right is represented
by the thin continuous curve and the wave travelling towards the left is represented by the
dotted curve. The thick continuous curve corresponds to the result of summing the two
travelling waves together, i.e. the resultant standing wave. The overall shape of this curve is
just like that of the standing wave corresponding to the fourth harmonic shown in Figure 6.2.
As time increases, the resultant standing wave evolves as shown.
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that of the standing wave corresponding to the fourth harmonic shown in Figure 6.2.
As time increases the resultant standing wave evolves as shown in Figure 6.3. Any
point on the standing wave is described by Equation (6.22), i.e. y = A sin kx cos ωt .
The transverse displacement of every point on the standing wave varies with SHM
as cos ωt and the amplitude of this motion varies as A sin kx, i.e. the nodes and
antinodes occur at fixed points on the x-axis, cf. discussion of Equation (6.1).

The two travelling sinusoidal waves that we have considered above extend to
large distances in both directions (in principle to x = ±∞). A string stretched
between two rigid walls has a finite length. However, it can still support standing
waves. In this case it is reflections at the two walls that produce the two waves
travelling in opposite directions. This is illustrated in Figure 6.4, which shows the
formation of a standing wave on a string stretched between two rigid walls. The
figure represents snapshots of the waves, at successive instants of time, separated
by T /8, where T is the period of the waves. Again the thin continuous curve
represents a wave travelling towards the right and the dotted curve represents a
wave travelling towards the left. (At some instants of time, the incident and reflected
waves lie on top of each other.) These waves are reflected at each of the walls.
Inspection of Figure 6.4 shows that the waves obey the rules of reflection that we

x = 0 x = L

t = 0

t = T/4

t = 3T/8

t = T/2

t = T/8

Figure 6.4 The formation of a standing wave on a string stretched between two rigid walls,
at successive instants of time. The thin continuous curve represents a wave travelling towards
the right and the dotted curve represents a wave travelling towards the left. These waves
are reflected at each of the rigid walls. The thick continuous curve represents the result of
adding the two travelling curves together, i.e. the superposition of the two waves and the
resultant shape of the string.
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discussed in Section 5.7 [below Equation (5.53)]: the waves reflected at a rigid
boundary have the same amplitude as the incident waves but suffer a phase shift
of π upon reflection. The thick continuous curve in Figure 6.4 is the superposition
of the two waves and the resultant shape of the string. The formation of a standing
wave and its evolution with time are apparent. Indeed the travelling waves and
the resultant shape of the string shown in Figure 6.4 are identical in form to the
waves shown within one wavelength on the left-hand side of Figure 6.3. We see
from Figure 6.4 that the displacement of the string is always zero at the two walls,
as it must be. Of course, a wave of any wavelength will be reflected at the walls.
However, we can see from Figures 6.3 and 6.4 that, for a standing wave to be
produced, the length of the string must be an integral multiple of half-wavelengths:
n(λ/2) = L. This is just our earlier condition, Equation (6.13). If the wavelength
does not meet this requirement the two travelling waves will interfere destructively
and a standing wave will not result.

6.3 THE ENERGY IN A STANDING WAVE

In Section 5.5 we considered the energy of a travelling wave and found that this
energy is carried along with the wave at the wave velocity. The situation for a
standing wave is different. As we have seen, a standing wave is a superposition of
two waves of the same frequency and amplitude travelling in opposite directions.
The energies of these two waves are also transported in opposite directions and so
there is no net transport of energy. Clearly, however, there is energy in a standing
wave: a vibrating string is in motion and it stretches in moving away from its
equilibrium position. Thus the string has both kinetic and potential energies. In
Section 5.5 we obtained a general expression for the total energy E contained in a
portion a ≤ x ≤ b of a string that carries a transverse wave:

E = 1

2
µ

∫ b

a

dx

[(
∂y

∂t

)2

+ v2
(

∂y

∂x

)2
]
, (5.37)

where µ is the mass per unit length of the string and v is the wave velocity. The
first term in the integral relates to the kinetic energy of the string and the second
term to its potential energy. We now use this expression to find the total energy
associated with a standing wave, i.e. the energy of a string of length L vibrating
in a single mode. (The more general case where several modes are present will be
considered in Section 6.4.4.) The standing wave solution for this case is given by

yn(x, t) = An sin
(nπ

L
x
)

cos ωnt, (6.10)

where ωn = v(nπ/L), Equation (6.8). Differentiating this expression with respect
to t and x gives

∂yn

∂t
= −Anωn sin

(nπ

L
x
)

sin ωnt,

∂yn

∂x
= An

(nπ

L

)
cos

(nπ

L
x
)

cos ωnt.

(6.23)
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Substituting the squares of these expressions into Equation (5.37), we obtain for
the energy En of a string, of length L, vibrating in the nth mode

En = 1

2
µA2

n

[
ω2

n sin2 ωnt

∫ L

0
dx sin2

(nπ

L
x
)

+ v2
(nπ

L

)2
cos2 ωnt

∫ L

0
dx cos2

(nπ

L
x
)]

. (6.24)

The two integrals have the same value L/2:∫ L

0
dx sin2

(nπ

L
x
)

=
∫ L

0
dx cos2

(nπ

L
x
)

= L

2
. (6.25)

To show this we use the trigonometric identity

sin2 α = 1

2
[1 − cos 2α] (6.26)

from which it follows that∫ L

0
dx sin2

(nπ

L
x
)

=
∫ L

0
dx

1

2

[
1 − cos

(
2nπ

L
x

)]

= 1

2

[
x − L

2nπ
sin

(
2nπ

L
x

)]L

0
= L

2

and hence∫ L

0
dx cos2

(nπ

L
x
)

=
∫ L

0
dx

[
1 − sin2

(nπ

L
x
)]

= L − L

2
= L

2
.

Substituting the value L/2 for the two integrals in Equation (6.24) and writing
v(nπ/L) = ωn, we obtain our final expression for the energy En of the vibrating
string in the nth mode:

En = 1

4
µLA2

nω
2
n(sin2 ωnt + cos2 ωnt)

= 1

4
µLA2

nω
2
n. (6.27)

The first term in the brackets in Equation (6.27) results from the kinetic energy of
the string while the second term results from its potential energy. This equation
shows that the energy of the system flows continuously between kinetic and poten-
tial energies although the total energy remains constant. This is a characteristic
feature of oscillating systems, as we similarly found for the simple harmonic oscil-
lator, Equation (1.23). When the string is at its maximum displacement, the string
is instantaneously at rest and all the energy is in the form of potential energy.
When the string passes through its equilibrium position, all the energy is in the
form of kinetic energy. Equation (6.27) also shows that the total energy contained
in the standing wave is proportional to the square of the vibration frequency and
the square of the amplitude of vibration.
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6.4 STANDING WAVES AS NORMAL MODES
OF A VIBRATING STRING

In Chapter 4 we discussed the normal modes of a coupled oscillator. The striking
characteristic of a normal mode is that all the masses move in SHM at the same
frequency: indeed this defined the normal modes. We also saw that these normal
modes are completely independent of each other and the general motion of the
system is a superposition of the normal modes. All of these properties are shared
by standing waves on a vibrating string; all the particles of the string perform
SHM with the same frequency. Indeed the standing waves are the normal modes
of the vibrating string and from now on we shall generally refer to them as normal
modes. So far we have only considered the case in which a single normal mode of
the string is excited. In Section 6.4.2 we shall deal with the case in which several
normal modes are excited simultaneously. We shall discuss their superposition and
independence and again we will see much similarity with our discussion of normal
modes in Section 4.3. The methods and results that we shall demonstrate for a
vibrating string admit generalisation to a huge range of physics – for example to
quantum mechanics – and are therefore of great importance. We shall begin by
describing the superposition principle.

6.4.1 The superposition principle

The superposition principle states that, if y1(x, t) and y2(x, t) are any two solu-
tions of the wave equation (5.23), then so is any linear combination

y(x, t) = A1y1(x, t) + A2y2(x, t) (6.28)

where A1 and A2 are arbitrary constants. This result follows at once from the
linearity of the wave equation (5.23), i.e. each term in the wave equation is pro-
portional to y or one of its derivatives: it does not contain quadratic or higher-power
terms or product terms such as y(∂y/∂x). (Equations of this type are known as
linear equations.) We can see this as follows. Multiplying the first of the following
equations

∂2y1

∂t2
= v2 ∂2y1

∂x2
,

∂2y2

∂t2
= v2 ∂2y2

∂x2

by A1 and the second by A2, and adding the resulting equations gives

A1
∂2y1

∂t2
+ A2

∂2y2

∂t2
= v2

(
A1

∂2y1

∂x2
+ A2

∂2y2

∂x2

)
.

Since

A1
∂2y1

∂t2
+ A2

∂2y2

∂t2
= ∂2

∂t2
(A1y1 + A2y2), and

v2
[
A1

∂2y1

∂x2
+ A2

∂2y2

∂x2

]
= v2 ∂2

∂x2
(A1y1 + A2y2),
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it follows that the linear superposition y(x, t), Equation (6.28), is also a solution
of the wave equation (5.23). This result clearly generalises to the superposition of
any number of solutions of the wave equation. These can be any solutions: they
do not have to be normal modes. However, for reasons that will become clearer in
the course of the following discussions we now choose a general superposition of
normal modes.

6.4.2 The superposition of normal modes

In Section 6.1 we found the expression for the nth normal mode of a vibrating
string of length L:

yn(x, t) = An sin
(nπ

L
x
)

cos ωnt. (6.10)

In general, the motion of the string will be a superposition of normal modes given
by

y(x, t) =
∑

n

yn(x, t) =
∑

n

An sin
(nπ

L
x
)

cos ωnt (6.29)

where ωn = nπv/L. An example of this is presented in Figure 6.5, which shows
the superposition of the third normal mode with a relative amplitude of 1.0 and
the thirteenth normal mode with a relative amplitude of 0.5. (We choose such a
high normal mode to demonstrate the superposition of the waves more clearly.)
The third normal mode is

y3(x, t) = 1.0 sin

(
3π

L
x

)
cos ω3t,

(a)

+

=

(b)

(c)

Figure 6.5 (a) Snapshot of the third harmonic y3(x, 0) of a taut string at t = 0. (b) Snapshot
of the thirteenth harmonic y13(x, 0) of a taut string at t = 0 where the wave amplitude is
equal to one half that of (a). (c) The superposition of the two harmonics to give the resultant
shape of the string at t = 0.
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and the thirteenth normal mode is

y13(x, t) = 0.5 sin

(
13π

L
x

)
cos ω13t.

Snapshots of these two normal modes at t = 0, i.e. y3(x, 0) and y13(x, 0), are
shown in Figure 6.5(a) and (b), respectively. The superposition of the two normal
modes is given by

y(x, t) = 1.0 sin

(
3π

L
x

)
cos ω3t + 0.5 sin

(
13π

L
x

)
cos ω13t (6.30)

and describes the motion of the vibrating string. This is illustrated in Figure 6.5(c)
which again is a snapshot of the string at t = 0. As time increases the shape of the
string evolves according to Equation (6.30). In particular it would take 13 complete
periods of the higher frequency ω13 before the exact shape shown in Figure 6.5(c)
is repeated.

To excite the two normal modes in this way, we would somehow have to con-
strain the shape of the string as in Figure 6.5(c) and then release it at time t = 0.
Of course, it is impractical to do this and in practice we pluck a string to cause
it to vibrate. The action of plucking a string is illustrated in Figure 6.6(a). In this
example the string is displaced a distance d at one quarter of its length. Initially,
the string has a triangular shape and this shape clearly does not match any of the
shapes of the normal modes shown in Figure 6.2. For one thing the triangle has
a sharp corner while the sinusoidal shapes of the normal modes vary smoothly.

L/4

y1(x,0)

y2(x,0)

y3(x,0)

y(x,0) = y1(x,0) + y2(x,0) + y3(x,0)

d

0 L

(a)

(b)

(c)

Figure 6.6 (a) The action of plucking a string is illustrated where the string is displaced
a distance d at one quarter of its length. (b) The first three excited normal modes of the
string. The amplitudes of these normal modes are given in the text. (c) The superposition
of the first three normal modes gives a good reproduction of the initial triangular shape of
the string except for the sharp corner. For all the above cases, t = 0.
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The remarkable thing is, however, that it is possible to reproduce this triangular
shape by adding together the normal modes of the string with appropriate ampli-
tudes. This is illustrated by Figure 6.6. In Figure 6.6(b) the first three normal
modes y1(x, 0), y2(x, 0) and y3(x, 0) are shown. [These are given by Equation
(6.10) with t = 0.] Their amplitudes are A, A/2

√
2 and A/9, respectively, where

A = 32d/3π2. (The general procedure for finding the values of these amplitudes
is developed in Section 6.4.3.) Figure 6.6(c) shows the superposition of these three
normal modes, i.e.

y(x, 0) = y1(x, 0) + y2(x, 0) + y3(x, 0)

and enables a comparison with the initial shape of the string. Even using just the first
three normal modes we get a surprisingly good fit to the triangular shape. By adding
more normal modes, we would achieve even better agreement, especially with
respect to the sharp corner. The corresponding frequencies of the normal modes
are given by the usual expression ωn = (nπv/L), Equation (6.8). Thus when we
pluck a string we excite many of its normal modes and the subsequent motion of the
string is given by the superposition of these normal modes according to Equation
(6.29). A vivid way to represent the composition of the normal modes is to make a
plot of their amplitudes against their frequencies which gives a frequency spectrum .
The frequency spectrum for the example of Figure 6.6 is shown in Figure 6.7.

n

d

0 1 2

An

3 4

Figure 6.7 The frequency spectrum showing the first four harmonics of the plucked string
shown in Figure 6.6, where the amplitudes of the normal modes are plotted against the mode
number. The amplitude of the n = 4 normal mode is zero.

Even before we see how to evaluate the amplitudes of the excited normal modes
(Section 6.4.3), we can say something about excitation of the fourth normal mode
in the above example. This normal mode has a node at one quarter the length of
the string. Hence, plucking the string at that point will not excite that mode which
is therefore missing from the superposition as is consistent with the frequency
spectrum in Figure 6.7.

Examples of the superposition of normal modes come from the sounds produced
by musical instruments. The note A played on an oboe sounds distinctly different
to the same note played on a flute, although both are wind instruments. In each
case, the fundamental frequency or pitch of the note is the same. However, the
relative amounts of the different normal modes (harmonics) that are produced
by the two instruments are different. It is this harmonic composition that affects
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the musical quality or timbre of the note. The clarinet is rich in harmonics while
the flute has much less harmonic content. Even different instruments of the same
type may exhibit different harmonic content and so sound somewhat different.
For example, the harmonic content produced by a Stradivarius violin is one of the
factors that make it a very desirable instrument. We can turn this situation around
and synthesise musical instruments. For this we use a set of oscillators to generate
sinusoidal waves with the frequencies of all the harmonics we wish to include.
We then add these together with appropriate relative amplitudes to synthesise the
musical instrument of choice.

6.4.3 The amplitudes of normal modes and Fourier analysis

In Section 6.4.2 we saw that the general motion of a vibrating string is a super-
position of normal modes, Equation (6.10). In particular, the initial shape of the
string f (x), i.e. at t = 0, is from Equation (6.29) given by

y(x, 0) =
∑

n

An sin
(nπ

L
x
)

= f (x). (6.31)

We now state a remarkable result: any shape f (x) of the string with fixed end
points [f (0) = f (L) = 0] can be written as a superposition of these sine functions
with appropriate values for the coefficients A1, A2, . . . , i.e. in the form:

f (x) =
∑

n

An sin
(nπ

L
x
)
. (6.32)

This result is due to Fourier. The expansion (6.32) is known as a Fourier series
and the amplitudes A1, A2, . . . as Fourier coefficients. The idea that an essentially
arbitrary function f (x) can be expanded in a Fourier series can be generalised and
is of great importance in much of theoretical physics and technology.

The Fourier expansion theorem, Equation (6.32), involves some difficult mathe-
matics and we will simply assume its validity. In contrast, its application in practice
is quite straightforward. Given f (x), i.e. the shape of the string, the amplitudes An

(n = 1, 2, . . .) are easily found. It is this that makes Fourier analysis such a pow-
erful tool. The determination of the amplitudes depends on two integrals involving
sine functions: ∫ L

0
dx sin2

(nπ

L
x
)

= L

2
, (6.33)

∫ L

0
dx sin

(mπ

L
x
)

sin
(nπ

L
x
)

= 0, m �= n (6.34)

where m and n are integers throughout. The first of these results we obtained
earlier, Equation (6.25). For the second, we use the trignometric identity

sin α sin β = 1

2
[cos(α − β) − cos(α + β)], (6.35)
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from which it follows that

∫ L

0
dx sin

(mπ

L
x
)

sin
(nπ

L
x
)

= 1

2

∫ L

0
dx

[
cos

(m − n)π

L
x − cos

(m + n)π

L
x

]

= 1

2

[
L

(m − n)π
sin

(m − n)π

L
x − L

(m + n)π
sin

(m + n)π

L
x

]L

0
= 0,

for m �= n, since sin Nπ = 0 for N = ±1, ±2, . . . .
Multiplying Equation (6.32) with sin(mπx/L) and integrating the resulting

equation with respect to x over the range x = 0 to x = L gives

∫ L

0
dx sin

(mπ

L
x
)

f (x) =
∑

n

An

∫ L

0
dx sin

(mπ

L
x
)

sin
(nπ

L
x
)
. (6.36)

It follows from Equation (6.34) that, of the terms in the series on the right-hand
side of Equation (6.36), only the term with m = n is different from zero, and on
account of Equation (6.33) has the value L/2. In this way we obtain the final
expression for the Fourier amplitude

An = 2

L

∫ L

0
dx sin

(nπ

L
x
)
f (x), n = 1, 2, . . . . (6.37)

Equations (6.32) and (6.37) are our final result: a statement of the Fourier theorem.
For any specific function f (x), i.e. the shape of the string at t = 0, Equation
(6.37) gives us the Fourier amplitudes A1, A2, . . . . Substituting these amplitudes
into Equation (6.32) gives us the initial shape of the string, expressed in its Fourier
components and, from Equation (6.29), the shape of the string at subsequent times.

The situation we have described here is essentially that of classical mechanics.
To solve Newton’s equations of motion for a system of particles, we must specify
their initial positions and velocities. For a string we have a continuum of particles,
and the initial conditions become the initial position and initial velocity of each
point on the string. We have treated the particular case of a string that is initially at
rest, [∂y(x, t)/∂t]t=0 = 0, cf. Equation (6.3), and with initial shape y(x, 0) = f (x).
Other initial conditions are possible leading to different forms of Fourier series.
We illustrate Fourier analysis by means of the following worked example.

Worked example

A string of length L is displaced at its mid-point by a distance d and released
at t = 0. Find the first three normal modes that are excited and their amplitudes
in terms of the initial displacement d.



Standing Waves as Normal Modes of a Vibrating String 155

Solution
The situation is illustrated in Figure 6.8. We represent the shape of the string
at time t = 0 by the function y = f (x). Inspection of Figure 6.8 shows that

f (x) = 2d

L
x, 0 ≤ x ≤ L/2,

f (x) = 2d − 2d

L
x L/2 ≤ x ≤ L.

x

y

0 L

d

L /2

Figure 6.8 A plucked string, where its midpoint is displaced by a distance d .

To cope with the ‘kink’ in f (x) at x = L/2, we split the integral (6.37) into
two parts, so that

An = 2

L

[∫ L/2

0
dxf (x) sin

(nπ

L
x
)

+
∫ L

L/2
dxf (x) sin

(nπ

L
x
)]

.

Substituting for f (x) over the appropriate ranges of x, the right-hand side of
this equation becomes

2

L

[∫ L/2

0
dx

(
2d

L
x

)
sin

(nπ

L
x
)

+
∫ L

L/2
dx

(
2d − 2d

L
x

)
sin

(nπ

L
x
)]

= 2

L

[
2d

L

∫ L/2

0
dxx sin

(nπ

L
x
)

+ 2d

∫ L

L/2
dx sin

(nπ

L
x
)

−2d

L

∫ L

L/2
dxx sin

(nπ

L
x
)]

.

We leave the evaluation of these integrals and the tidying up of the resulting
expressions to the reader.1 The final result is

An = 8d

(nπ)2
sin

(nπ

2

)
. (6.38)

1 This involves simple algebra that the reader may be inclined to follow through. The following
formulae are useful for the indefinite integrals:∫

dx sin ax = − 1

a
cos ax,

∫
dxx sin ax = 1

a2 sin ax − x

a
cos ax,

where a is a constant.
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It follows that when we pluck a string at its mid point we excite many normal
modes (in principle an infinite number). From Equation (6.38), we have An = 0
for even values of n: we only excite those modes that have odd values of n,
since modes with even n have a node at the mid-point of the string and so
will not be excited. Equation (6.38) gives the amplitudes An of these normal
modes:

n = 1, A1 = 8d

(π)2

n = 3, A3 = − 8d

(3π)2
(6.39)

n = 5, A5 = 8d

(5π)2

and the corresponding normal modes yn(x, t) are given by Equation (6.10) with
these values of the amplitudes and frequencies given by ωn = (nπ/L)(

√
T /µ)

[cf. Equations (6.8) and (5.32)]. Notice that the combination of normal modes
that are excited in this example is different to that for the case of plucking the
string one quarter of the way along its length, see Section (6.4.2). This has
the consequence that, when plucking a violin string (playing ‘pizzicato’), the
timbre of the sound depends on where along the string it is plucked.

6.4.4 The energy of vibration of a string

In Section 6.3 we considered a string vibrating in a single normal mode, given
by

yn(x, t) = An sin
(nπ

L
x
)

cos ωnt (6.10)

and we derived the energy En of the string vibrating in this mode:

En = 1

4
µLA2

nω
2
n(sin2 ωnt + cos2 ωnt) = 1

4
µLA2

nω
2
n. (6.27)

We now want to obtain the energy E of the vibrating string when there are several
modes present. The general superposition of normal modes is given by

y(x, t) =
∑

n

yn(x, t) =
∑

n

An sin
(nπ

L
x
)

cos ωnt, (6.29)

and we must use this expression, instead of Equation (6.10), for calculating the
energy E of the wave from Equation (5.37):

E = 1

2
µ

∫ b

a

dx

[(
∂y

∂t

)2

+ v2
(

∂y

∂x

)2
]
. (5.37)
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The expressions for the derivatives ∂y/∂t and ∂y/∂x required in Equation (5.37)
now do not consist of single terms as in Equation (6.23) for a single mode, but of
sums of terms over the n modes:

∂y

∂t
= −

∑
n

Anωn sin
(nπ

L
x
)

sin ωnt,

with a similar sum over modes for ∂y/∂x. It is the squares of these derivatives
that occur in Equation (5.37), and squaring these derivatives, as in

(
∂y

∂t

)2

=
[
−

∑
m

Amωm sin
(mπ

L
x
)

cos ωmt

][
−

∑
n

Anωn sin
(nπ

L
x
)

cos ωnt

]
,

will lead to ‘cross terms’ containing the products

sin
(mπ

L
x
)

sin
(nπ

L
x
)

, cos
(mπ

L
x
)

cos
(nπ

L
x
)

(6.40)

with m �= n. [The cross terms containing products of cosines stem from (∂y/∂x)2.]
As a consequence, the expression for the energy E will contain integrals over these
product terms, Equation (6.40), in addition to the quadratic terms which occur in
Equation (6.24) for the single-mode case. However, the integrals involving the
cross terms have the value 0, since for m �= n

∫ L

0
dx sin

(mπ

L
x
)

sin
(nπ

L
x
)

=
∫ L

0
dx cos

(mπ

L
x
)

cos
(nπ

L
x
)

= 0. (6.41)

The first of these results was obtained in Equation (6.34), and the second is derived
in exactly the same way using the trigonometric identity

cos α cos β = 1

2
[cos(α − β) + cos(α + β)] (6.42)

instead of Equation (6.35). Hence the cross terms with m �= n vanish in the inte-
gration and the total energy E is given by a sum of terms like Equation (6.27):

E = 1

4
µL

∑
n

A2
nω

2
n(sin2 ωnt + cos2 ωnt) = 1

4
µL

∑
n

A2
nω

2
n. (6.43)

The most interesting feature of this result is that each normal mode contributes an
energy

En = 1

4
µLA2

nω
2
n (6.44)

quite independently of the other normal modes. This is quite typical of normal
modes as we discussed in Chapter 4. They are independent of each other and there
is no coupling between them. Consequently their energies are additive. [Mathemat-
ically, this independence results from Equation (6.41) which ensures that no ‘cross
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terms’ involving products of amplitudes AmAn, with m �= n, survive.] An analo-
gous result was obtained in Section 4.3 for the energy of two simple pendulums
coupled by a spring. In terms of their position coordinates xa and xb, their motions
are coupled, but in terms of their normal coordinates q1 and q2 they perform SHM
independently of each other.

PROBLEMS 6

(Take the velocity of sound in air to be 340 m s−1.)

6.1 A wire hangs vertically from a ceiling with a mass of 10 kg attached to its lower end.
The wire is 0.50 m long and weighs 25 g. (a) Calculate the wave velocity along the
wire and the wavelength and frequency of the fundamental mode of vibration. (b) If the
maximum transverse displacement of the wire in the fundamental mode of vibration is
3.0 cm, calculate the largest values of velocity and acceleration that a particle of the
wire can have.
(Assume g = 9.81 m s−2.)

6.2 (a) A wave of frequency 262 Hz travels down a long wire that has a mass per unit
length of 0.04 kg m−1 and a tension of 200 N. Calculate the wavelength of the wave.
(b) A length L of the wire is held at a tension of 200 N between two fixed points.
What value of L is required to obtain a fundamental frequency of 262 Hz (middle C)
when the wire is plucked? (c) What are the frequency and wavelength of the sound
wave produced by the wire when it is vibrating in its fundamental mode? Explain any
differences.

6.3 (a) A taut string fastened at both ends has successive normal modes with wavelengths
of 0.44 m and 0.55 m, respectively. Identify the mode numbers and determine the
length of the string. (b) The cold spots in a microwave oven are found to have a
separation of 0.5 cm. What is the frequency of the microwaves?

6.4 The travelling wave y1 = A cos(ωt − kx) combines with the reflected wave
y2 = RA cos(ωt + kx) to produce a standing wave. Show that the standing wave
can be represented by y = 2RA cos ωt cos kx + (1 − R)A cos(ωt − kx). Hence,
show that the ratio of the maximum and minimum amplitudes of the standing wave
is (1 + R)/(1 − R).

6.5 The tension in the A string of a violin is adjusted to produce a fundamental frequency
of 440 Hz. (a) What are the frequencies of the second and third harmonics? Does
the wave velocity change in going to these harmonics? (b) The hearing range of the
violinist extends to 15 kHz. What is the total number of harmonics of the string the
violinist can hear? (c) If the violin string is 32 cm long, how far from the end of the
string should the violinist place their finger to play the note of C (523 Hz)?

6.6 An octave is an increase in frequency by a factor of two. (a) Estimate the number
of octaves over which you can hear. (b) Estimate the number of octaves covered by
the spectrum of electromagnetic radiation from a radio frequency wave of wavelength
1500 m to a γ -ray of energy 1.0 MeV. (Planck’s constant h = 4.14 × 10−15 eV s.)

6.7 A violin string is held under tension T . What will be the fractional change in the
frequency of its fundamental mode of vibration if the tension is increased by the
amount δT ?

6.8 The six strings of a guitar are tuned to the notes E (lowest frequency), A, D, G, B and
E (highest frequency) with a range of two octaves between the two E strings. All the
strings should be held under the same tension to avoid distortion of the neck of the
guitar. (a) If the high-frequency E string has a diameter of 0.30 mm, what should be
the diameter of the low-frequency E string, assuming that both strings are made from
the same material? (b) The fundamental frequency of the high-frequency E string is
330 Hz. If the distance between the nut and bridge of the guitar, i.e. the two fixed
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ends, is 65 cm and the strings are made of steel with a density of 7.7 × 103 kg m−3,
find the total force acting on the neck of the guitar. (c) If the high-frequency E string
is made of nylon instead of steel what should be its diameter, assuming that the same
tension is applied to it? (Take the density of steel to be six times the density of nylon.)

6.9 Three particles of mass M/3 are connected by four identical elastic strings of length
L/4 between two rigid supports. The tension in the strings is T . (a) Show that the
angular frequencies of the three normal modes for transverse oscillations are ω2

1 =
(2 − √

2)α, ω2
2 = 2α and ω2

3 = (2 + √
2)α, where α = 12T/LM . (b) Compare the

frequencies ω1/2π, ω2/2π and ω3/2π with the frequencies of the first three harmonics
of a string of total mass M stretched under tension T between two fixed points a
distance L apart.

6.10

∆ v

vo

v

The excited atoms in the optical cavity of a laser emit light over a narrow range of
frequencies and not at a single frequency. This is mainly because the atoms have a
range of thermal energies and therefore a range of velocities. This is called Doppler
broadening . The resulting spectral line profile is illustrated by the figure in which the
vertical bars indicate the mode frequencies of the optical cavity. Light amplification
occurs at light frequencies that coincide with a mode frequency, and that lie within a
certain frequency range �ν, also indicated on the figure. (a) If the spectral line profile
has a central frequency νo = 4.74 × 1014 Hz and �ν = 4.55 × 109 Hz and the length
of the optical cavity is 100 cm, how many normal frequencies will occur within the
range �ν? (b) How long would the cavity have to be so that only one mode frequency
occurred within the range �ν?

6.11 A string is plucked one-third along its length. Give three examples of normal modes
that will not be excited.

6.12 The function f (x) = αx over the range x = 0 to x = L, where α is a constant, can
be represented by a Fourier series,

f (x) =
∑

n

An sin
(nπ

L
x
)
.

Show that the series is given by

f (x) = 2αL

π

[
sin

(πx

L

)
− 1

2
sin

(
2πx

L

)
+ 1

3
sin

(
3πx

L

)
− · · ·

]
.

6.13 Consider a string held under tension T between two fixed points a distance L apart. (a)
If the string is displaced by a distance d at its centre show that it acquires an energy
equal to 2T d2/L, assuming the tension in the string remains constant. (b) Using the
results from the worked example in the text, show that the three harmonics of lowest
frequency contain 93.5% of the energy when the string is released.

6.14 A function f (x) is defined by the series

f (x) = 4

π

(
cos x

1
− cos 3x

3
+ cos 5x

5
− cos 7x

7
+ · · ·

)
.
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Use a spreadsheet program to plot f (x) over the range x = 0 to x = 4π. How would
you describe the shape of the function f (x)?

6.15

x

Energy

0

L

∞ ∞

An important example in quantum mechanics is that of a particle confined between
the walls of an infinite-well potential. Such a potential is illustrated in the figure. The
particle has an associated wavelength λ that is subject to the same condition as that
of a vibrating string, i.e. nλ/2 = L, where L is the length of the well. Moreover, the
classical momentum p of a particle of mass m is related to its wavelength λ by the
de Broglie relation λ = h/p, where h is Planck’s constant. (a) Show that the allowed
energies En of the particle are given by En = n2h2/8mL2. (b) Evaluate En for n = 1,
when L = 2 × 10−10 m, and m is the mass of the electron.
(Planck′s constant = 6.6 × 10−34 J s and the mass of an electron = 9.1 × 10−31 kg.)



7
Interference and Diffraction
of Waves

Interference and diffraction are some of the most striking phenomena produced by
waves. Interference is evident in the rainbow of colours produced by a thin film
of oil on a wet road, where the light reflected off the surface of the oil interferes
with the light reflected off the water surface underneath. Diffraction is evident
when water waves are incident upon the narrow mouth of a harbour. The waves
spread out in a semicircular fashion after passing through the harbour mouth. We
shall begin by discussing interference and later turn our attention to diffraction.
However, there is no fundamental physical difference between interference and
diffraction; they both result from the overlap and superposition of waves.

7.1 INTERFERENCE AND HUYGEN’S PRINCIPLE

Suppose that we have two monochromatic waves ψ1 and ψ2 with wavelength
λ that have been derived from the same source: this avoids any random phase
changes from two separate sources. These waves follow different paths and are
recombined at a particular point in space. The difference in their path lengths
from the common source is s. If this path difference is equal to an integral num-
ber of wavelengths, the crests and the troughs of one wave line up exactly with
the crests and the troughs of the other wave, as shown in Figure 7.1(a): the two
waves are said to be in phase. There is constructive interference and the amplitude
of the superposition (ψ1 + ψ2) is equal to 2A where A is the amplitude of the
individual waves. If the path difference is an odd number of half wavelengths,
the crests of one wave line up with the troughs of the other wave as shown in
Figure 7.2(b): the two waves are said to be out of phase. There is destructive inter-
ference and the amplitude of their superposition is zero. We write these interference
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Figure 7.1 (a) Two monochromatic waves ψ1 and ψ2 at a particular point in space where
the path difference from their common source is equal to an integral number of wavelengths.
There is constructive interference and their superposition (ψ1 + ψ2) has an amplitude that
is equal to 2A where A is the amplitude of the individual waves. (b) The two waves ψ1

and ψ2 where the path difference is equal to an odd number of half wavelengths. There is
destructive interference and the amplitude of their superposition is zero.

conditions as:

s = nl , n = 0, ± 1, ± 2, . . . : constructive interference. (7.1)

s = n +
1

2
l, n = 0, ± 1, ± 2, . . . : destructive interference. (7.2)

For other values of path difference s the resulting amplitude will lie between
these two extremes of total constructive and destructive interference. Since phase
difference φ = 2πs/λ, we can also write the interference conditions as:

f = 2n π, n = 0, ± 1, ± 2, . . . : constructive interference. (7.3)

f = (2n + 1)π n, = 0, ± 1, ± 2, . . . : destructive interference. (7.4)

These are the basic results for the interference of waves. They are of fundamental
importance and can be applied to a wide range of physical phenomena. We
shall apply them to various physical situations and in particular to an archetypal
example of interference, namely Young’s double-slit experiment. This experiment
incorporates all the essential physical principles of wave interference and we shall
discuss it in some detail. However, before doing so, we first describe Huygen’s
principle, which is named after the Dutch physicist Christian Huygen. This
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direction of 
wave propagation

primary
wave front υ∆t

new
wave front

Figure 7.2 The application of Huygen’s principle to the progression of a plane wave. Each
point on the primary wavefront acts as a source of secondary wavelets. These secondary
wavelets combine and their envelope represents the new wavefront, which is also a plane
wave.

principle provides an empirical approach to predicting the progression of waves
and we will use it to explain interference and, later, diffraction.

Huygen postulated that each point on a primary wavefront acts as a source of
secondary wavelets such that the wavefront at some later time is the envelope
of these wavelets. Huygen’s principle is illustrated in Figure 7.2 for the example
of a plane wave. To construct the wavefront at a time interval �t later, arcs are
drawn in the forward direction from points across the primary wavefront. The
radius of each arc is equal to v�t where v is the wave velocity. These secondary
wavelets combine and their envelope represents the new wavefront, which is also
a plane wave as illustrated in Figure 7.2. If a wavefront encounters an aperture
in an opaque barrier, the points on the wavefront across the aperture act like
sources of secondary wavelets. When the aperture is very narrow, i.e. its width is
comparable with the wavelength, the aperture acts like a point source and wavelets
spread out in a semicircular fashion, as illustrated in Figure 7.3. The effect of
the barrier is to suppress all propagation of the primary wave except through the
aperture. Huygen’s principle is successful in describing, at least qualitatively, the
behaviour of the waves in these two examples. It is important to note, however,
that Huygen’s principle is an empirical approach. It provides only a qualitative
description of the progression of a wave and it has shortcomings. In particular,
we would expect the secondary sources on the primary wavefront to also produce
a wave that propagates in the backward direction. In reality this does not occur
and Huygen’s principle ignores this other wavefront. However, a full and rigorous
treatment of wave propagation, subsequently developed by G. Kirchhoff, finds that
the secondary wavelets do in fact lie in the forward direction.

7.1.1 Young’s double-slit experiment

Young’s double-slit experiment was crucially important in confirming the wave
nature of light. However, it remains of fundamental importance as an archetypal
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Figure 7.3 When a wavefront encounters an aperture in an opaque barrier, the barrier
suppresses all propagation of the wave except through the aperture. Following Huygen’s prin-
ciple, the points on the wavefront across the aperture act as sources of secondary wavelets.
When the width of the aperture is comparable with the wavelength, the aperture acts like a
point source and the outgoing wavefronts are semicircular.

example of interference and arises, for example, in discussions of the quantum
mechanical wave properties of matter. The arrangement of Young’s double-slit
experiment is illustrated in Figure 7.4, where the vertical scale has been greatly
expanded for the sake of clarity. A monochromatic plane wave of wavelength λ is
incident upon an opaque barrier that contains two very narrow slits S1 and S2. Each
of these slits acts as a source of secondary wavelets according to Huygen’s principle
and the disturbance beyond the barrier is the superposition of all the wavelets
spreading out from the two slits. Since these secondary wavelets are driven by the
same incident wave there is a well defined phase relationship between them. This
condition is called coherence and implies a systematic phase relationship between
the secondary wavelets when they are superposed at some distant point P . It is
this phase relationship that gives rise to the interference pattern, which is observed
on a screen a distance L beyond the barrier. The separation of the slits is a. The
slits have a long length (� a) in the direction normal to the page and this reduces
the problem to two dimensions. (If we used pin holes instead of slits it would
be a three-dimensional problem.) The value of a is typically ∼0.5 mm while the
distance L to the screen is typically of the order of a few metres. Hence L � a

and this allows us to make some useful approximations as we shall see.
We consider the secondary wavelets from S1 and S2 arriving at an arbitrary

point P on the screen. P is at a distance x from the point O that coincides with
the mid-point of the two slits. The distances of S1 and S2 from P are l1 and l2,
respectively. Since L � a it can be assumed that the secondary wavelets arriving
at P have the same amplitude A. The superposition of the wavelets at P gives the
resultant amplitude

R = A[cos(ωt − kl1) + cos(ωt − kl2)], (7.5)
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Figure 7.4 Schematic diagram of Young’s double-slit experiment. The vertical scale has
been enlarged for the sake of clarity. A monochromatic plane wave of wavelength λ is
incident upon an opaque barrier containing two slits S1 and S2. These slits are very narrow
but have a long length in the direction normal to the page, making this a two-dimensional
problem. The resultant amplitude at point P is due to the superposition of secondary wavelets
from the two slits.

where ω and k are the angular frequency and wavenumber, respectively. This result
can be rewritten as

R = 2A cos[ωt − k(l2 + l1)/2)] cos[k(l2 − l1)/2]. (7.6)

The line joining P to the mid-point of the slits makes an angle θ with respect to
the horizontal axis. Since L � a, the lines from S1 and S2 to P can be assumed to
be parallel and also to make the same angle θ with respect to the horizontal axis.
Hence

l1 � L/cos θ � l2

and so

(l2 + l1) � 2L/cos θ.

When the two slits are separated by many wavelengths, which is the case in prac-
tice, θ is very small [cf. Equation (7.12)] and cos θ � 1. Hence, we can write the
resultant amplitude as

R = 2A cos(ωt − kL) cos(k�l/2) (7.7)

where �l = (l2 − l1) is the path difference of the secondary wavelets. The intensity
I at point P is equal to the square of the resultant amplitude R:

I = 4A2 cos2(ωt − kL) cos2(k�l/2). (7.8)



166 Interference and Diffraction of Waves

This equation describes the instantaneous intensity at P . The variation of the inten-
sity with time is described by the cos2(ωt − kL) term. The frequency of oscillation
of visible light is of the order of 1015 Hz, which is far too high for the human eye
to follow. Indeed it is too fast for any laboratory apparatus. What we observe is a
time average of the intensity. Since the time average of cos2(ωt − kL) over many
cycles is equal to 1/2, the time average of the intensity is given by

I = Io cos2(k�l/2), (7.9)

where Io = 2A2 is the intensity observed at a maximum of the interference pattern.
The term cos2(k�l/2) shows how the observed intensity varies with the path
difference �l. The intensity is a maximum whenever �l is an integral number
of wavelengths and it is zero whenever �l is an odd number of half-wavelengths,
illustrating the general interference conditions (7.1 and 7.2). We see from Figure 7.4
that �l � a sin θ . Substituting for �l in Equation (7.9) we obtain

I (θ) = Io cos2(ka sin θ/2). (7.10)

When θ is small so that sin θ � θ , we can write

I (θ) = Io cos2(kaθ/2)

= Io cos2(πaθ/λ) (7.11)

using k = 2π/λ. A plot of I (θ) against θ is shown in Figure 7.5. We see that the
resulting interference pattern on the screen consists of alternate bright and dark
interference fringes .

Io

Io/2

lL /a
I(q)

q = 0
q

Figure 7.5 The interference pattern observed in Young’s double-slit experiment. The light
intensity I (θ) is plotted as a function of the angle θ shown in Figure 7.4. The small angle
approximation, sin θ � θ , has been made and the separation of the bright fringes is equal
to λL/a. If there were no interference, the intensity would be uniform and equal to Io/2 as
indicated by the horizontal dashed line.

The important parameter that determines the general appearance of the interfer-
ence pattern is the dimensionless ratio of the slit separation a to the wavelength λ.
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Intensity maxima occur when

θ = nλ

a
, n = 0, ±1, ±2, . . . , (7.12)

and so the bright fringes occur at distances from the point O given by

x = Lθ = n
λL

a
, n = 0, ±1, ±2, . . . . (7.13)

Similarly, minima occur when

x =
(

n + 1

2

)
λL

a
, n = 0, ±1, ±2, . . . . (7.14)

The distance between adjacent bright fringes is

xn+1 − xn = λL

a
(7.15)

and is independent of the value of n. For example, for values of λ = 550 nm,
L = 2.0 m and a = 0.5 mm, the fringe separation is 2.2 mm. If there were more
than a single wavelength in the incident light beam, each wavelength component
would give rise to a set of bright and dark fringes. However, these would occur
at different positions to those of the other wavelength components and this would
cause the interference pattern to become washed out. Consequently we must use
monochromatic light to obtain a clear set of interference fringes with high visibility .

We emphasise that there would be no interference pattern if the two sources of
secondary wavelets S1 and S2 were not coherent. Instead the resultant intensity
would be uniform across the screen with a value equal to Io/2, as indicated by
the horizontal dashed line in Figure 7.5. Of course, energy must be conserved, and
when we have interference there is a redistribution of intensity from the regions of
destructive interference to those of constructive interference. We also note that the
phase difference of the secondary wavelets arriving at a point P is much more sensi-
tive to path difference �l than is their amplitudes. A change in �l of λ/2 can cause
the resultant intensity to go from maximum to minimum, while the wave amplitudes
(∝ 1/l, for a two-dimensional wave) would change by a negligible amount.

We could ensure that the secondary wavelets from the two slits S1 and S2 are
coherent, i.e. have a well defined phase relationship, by illuminating them with a
point source. In practice, however, real sources are not ideal point sources because
they have a finite width. Such real sources will, in general, consist of many individ-
ual point sources spread across this finite width. Moreover, these individual point
sources are not coherent with each other.1 For example, the source could be a slit
in the jacket surrounding a sodium discharge lamp. The light from such a lamp
comes from excited atoms that decay randomly and independently and therefore
act as individual point sources that are not coherent with each other. However,

1 This discussion relates to conventional light sources like sodium lamps and not to lasers, which are
essentially coherent across the width of the light beam.



168 Interference and Diffraction of Waves

l1

l2

S1

S2

l

w a

Figure 7.6 An extended source of width w that is used to illuminate the two slits in a
Young’s double-slit experiment.

we can still obtain an interference pattern with such a source if its spatial extent is
smaller than a critical value, as we shall now show. Figure 7.6 shows an extended
source of width w that is used to illuminate the two slits S1 and S2. The slits have a
separation a and the source is at a distance l from the opaque barrier containing the
slits. We consider the extended source to be made up of independent point sources
that are not coherent with each other. Each of these individual point sources will
produce secondary wavelets at S1 and S2 that have a well defined phase relation-
ship. Hence, these wavelets will produce an interference pattern on a screen placed
beyond the slits. However, the interference patterns produced by different point
sources will be displaced relative to each other by an amount that depends on their
position in the extended source. This is because the phase relationship between the
secondary wavelets at S1 and S2 due to a particular point source depends on the
path difference between that source and the two slits. In turn, the position of say a
maximum in the interference pattern depends on the phase between these secondary
wavelets. Clearly, if the range of phase differences between secondary wavelets at
S1 and S2 arising from different point sources is too large, the interference pattern
will become washed out. The smallest path difference is zero, which results from a
point source at the centre of the extended source. (In that case the phase difference
between the wavelets at S1 and S2 is zero.) The largest path difference will be for
a point source at the end of the extended source, as illustrated in Figure 7.6, where
the respective path lengths are l1 and l2. We have

l2
1 = l2 + (a/2 − w/2)2, l2

2 = l2 + (a/2 + w/2)2,

giving,

l2
2 − l2

1 = aw.

Since l � a and l � w,

l2
2 − l2

1 = (l2 − l1)(l2 + l1) � 2l(l2 − l1).
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Hence,

(l2 − l1) � aw

2l
. (7.16)

To obtain a clear interference pattern the range of the phase differences for the
wavelets produced at S1 and S2 must be sufficiently small. In terms of path
difference, this means that (l2 − l1) must be much less than the wavelength
λ, i.e.

aw

2l
	 λ (7.17)

and hence,

w 	 2lλ

a
. (7.18)

Thus an extended source of width w behaves like a coherent light source so long
as Equation (7.18) is satisfied. The extended source subtends an angle θ at each
slit where

θ � w

l
. (7.19)

Thus, from Equation (7.18), we have

θ 	 2λ

a
(7.20)

which gives the maximum divergence angle that the source can have to produce
clear interference fringes. If, for example, a = 0.5 mm, then θ must be much
less than 10−3 rad at a wavelength of 500 nm. Hence, if we used a discharge
lamp that operated at this wavelength and it was placed a distance of 1 m from
the two slits, we would have to place the lamp behind a slit of width less than
1 mm. These consideration apply more generally to systems containing many slits.
For the example of a diffraction grating, a is the distance between the outermost
slits, i.e. the size of the diffraction grating. Hence, Equation (7.20) relates the size
of the diffraction grating to the angle subtended at the grating by the extended
source.

Interference occurs in many other physical situations as, for example, with sound
waves. This is illustrated in Figure 7.7, which shows two loudspeakers that are
connected to the same amplifier. Since the loudspeakers are driven by the same
amplifier, the sound waves are coherent and will produce an interference pattern.
The resulting sound intensity is plotted as a function of distance along the line AB
which is at a large distance from the loudspeakers compared to their separation. If
we were to move along that line we would hear the sound intensity rise and fall. In
contrast, there would no interference if the loudspeakers were driven by different
amplifiers, since there would be nothing to maintain a constant phase relationship
between the sound waves. This means we would not experience interference effects
in front of the stage at a rock concert if there were two guitarists using separate
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Figure 7.7 (Not to scale.) Two loudspeakers connected to the same amplifier produce
coherent sound waves. These waves superpose to produce an interference pattern along the
line AB . The intensity of the sound is proportional to the square of the amplitude of the
superposition and the variation in intensity along the line AB is shown. This line is at a
large distance from the loudspeakers compared to their separation.

amplifiers even if they were playing the same note. Interference is also exploited in
a range of practical applications. For example, when a beam of X-rays is shone onto
a crystal it is found that the intensity of the reflected rays becomes intense at certain
values of the angle θ that the incident beam makes with the atomic planes of the
crystal. This occurs because the X-rays are reflected off successive atomic planes
and if the resultant path difference is equal to an integral number of wavelengths,
there is constructive interference. The angles for constructive interference are given
by the Bragg law:

2d sin θ = nλ, n = ±1, ±2, . . .

where d is the separation of the atomic planes and λ is the wavelength. X-ray
crystallography is widely used to determine the structure of matter and Crick and
Watson famously got their idea for the double-helix structure of DNA from looking
at Rosalind Franklin’s X-ray interference patterns from DNA.

7.1.2 Michelson spectral interferometer

Young’s double-slit experiment is an example of interference by division of
wavefront , where we take two portions of the wavefront to obtain the two coher-
ent wave sources. We can also have interference by division of amplitude where
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the primary wave itself is divided into two parts by, for example, a semi-silvered
mirror. An important example of division of amplitude is the Michelson spectral
interferometer . This interferometer provided one of the key experimental observa-
tions underpinning the theory of relativity. It is also a powerful research tool with
many applications including the determination of the emission spectra of atoms
and molecules, i.e. the wavelengths of their emitted radiations. In particular, it
can do this with very high spectral resolution. The principle of operation of the
Michelson spectral interferometer is illustrated in Figure 7.8. A beam of light from

source beam splitter

compensator
plate

x
detector

mirror M1

mirror M2

Figure 7.8 Schematic diagram of the Michelson spectral interferometer.

a monochromatic source is split into two equal beams by the semi-reflecting front
face of the beam splitter . The two separate beams travel to mirrors M1 and M2,
respectively, and then return to the beamsplitter from where they travel along
the same path to the detector. The presence of the compensator plate ensures
that the beams transverse the same total thickness of glass in both arms of the
interferometer. The two superposed beams have the same intensity at the detector
since each undergoes one transmission and one reflection at the semi-reflecting
surface of the beamsplitter. Mirror M1 is fixed in position. The position of mirror
M2 can be adjusted with a very fine micrometer screw. If the path lengths of the
two beams are the same or are different by an integral number of wavelengths, the
beams will interfere constructively at the detector and there will be a maximum in
the detected light intensity. However, if the path lengths are different by an odd
number of half-wavelengths, there will be destructive interference and the detected
light intensity will be zero. When the detected light intensity is plotted as a function
of the displacement x of mirror M2 an interference pattern is obtained, as shown in
Figure 7.9. The separation of adjacent interference maxima is equal to λ/2 where
λ is the wavelength and hence the value of λ may be determined.



172 Interference and Diffraction of Waves

l/2

x
In

te
ns

ity

x = 0

Figure 7.9 The interference pattern observed with a Michelson spectral interferometer. The
measured light intensity is plotted as a function of the displacement x of the moveable mirror
M2. The separation of the maxima in the measured intensity is equal to λ/2, where λ is the
wavelength of the light.

7.2 DIFFRACTION

A wave spreads out from its source becoming a plane wave at large distances,
as we saw in Section 5.8. Any obstacle in the path of the wave affects the way it
spreads out; the wave appears to ‘bend’ around the obstacle. Similarly, the wave
spreads out beyond any aperture that it meets. Such bending or spreading of the
wave is called diffraction. The effects of diffraction are evident in the shadow of
an object that is illuminated by a point source. The edges of the shadow are not
sharp but are blurred due to the bending of the light at the edges of the object. For
the same reason the letters on a car number plate become blurred when we view
the car from a distance of more than a few hundred metres or so. The light striking
our eye bends at the iris so that the image on the retina becomes blurred. On a
larger scale, waves from the Atlantic Ocean spread out after passing through the
gap between Gibraltar and Spain. This is visible on satellite images of the Strait
of Gibraltar, an example of which is shown in Figure 7.10. (This image was taken
by a satellite of the European Space Agency.)

We shall see that the degree of spreading of a wave after passing through an
aperture depends on the ratio of the wavelength λ of the wave to the size d of the
aperture. The angular width of the spreading is approximately equal to λ/d; the
bigger this ratio, the greater is the spreading. We begin by discussing diffraction
at a single slit. This is the archetypal example of diffraction and displays all the
essential physical principles.

7.2.1 Diffraction at a single slit

In our discussion of Young’s double-slit experiment, we considered the width
of each slit to be very narrow. This allowed us to assume that the path lengths
from all points across a slit to a distant point P were equal. In practice a real
slit is not arbitrarily narrow but has a finite extent. Hence, the path lengths from
different points across the slit to the point P will be different and consequently the
secondary wavelets arriving at P will have a variation in phase. This variation in
phase gives rise to the diffraction pattern of the slit.
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Figure 7.10 A satellite image of the Strait of Gibraltar showing the spreading of Atlantic
Ocean waves after passing through the gap between Spain and Gibraltar. Image courtesy of
the European Space Agency.
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Figure 7.11 Diffraction at a single slit. The vertical scale has been enlarged for the sake
of clarity. A monochromatic plane wave of wavelength λ is incident upon an opaque barrier
containing a single slit. The slit has a width d and a long length (� d) in the direction
normal to the page, reducing this to a two-dimensional problem. The resultant amplitude at
point P is due to the superposition of secondary wavelets from the slit.

Figure 7.11 shows a monochromatic plane wave of wavelength λ that is incident
on a single slit in an opaque barrier. The slit has width d and a long length (� d)

in the direction normal to the page, making this a two-dimensional problem. The
centre of the slit is at x = 0. We divide the slit into infinitely narrow strips of
width dx. Following Huygen’s principle, each of these strips acts as a source of
secondary wavelets and the superposition of these wavelets gives the resultant
amplitude at point P . We consider the case in which P is very distant from the
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slit. Consequently, all the wavelets arriving at P can be assumed to be plane waves
and to have the same amplitude. In addition, we can assume that the lines joining
P to all points on the slit make the same angle θ to the horizontal axis.

The amplitude dR of the wavelet arriving at P from the strip dx at x is pro-
portional to the width dx of the strip, and its phase depends on the distance of P

from the strip, i.e. on (l − x sin θ), where l is the distance of P from the midpoint
of the slit. Hence dR is given by

dR = αdx cos[ωt − k(l − x sin θ)], (7.21)

where ω and k are the angular frequency and wavenumber, respectively, and α is
a constant. The resultant amplitude at P due to the contributions of the secondary
wavelets from all the strips is

R =
∫ d/2

−d/2
αdx cos[ωt − k(l − x sin θ)]. (7.22)

We can evaluate this integral to obtain

R = αd

(kd/2) sin θ
sin[(kd/2) sin θ ] cos(ωt − kl). (7.23)

The instantaneous intensity I at P is equal to the square of the amplitude R and
thus

I = α2d2 cos2(ωt − kl)
sin2[(kd/2) sin θ ]

[(kd/2) sin θ ]2
. (7.24)

Since the time average over many cycles of cos2(ωt − kl) is equal to 1/2, the time
average of the intensity is given by

I (θ) = Io
sin2[(kd/2) sin θ ]

[(kd/2) sin θ ]2
, (7.25)

where Io = α2d2/2 is equal to the maximum intensity of the diffraction pattern.
This equation describes how an incident plane wave of wavelength λ spreads out
from a single slit of width d in terms of the angle θ . The resulting diffraction
pattern is shown in Figure 7.12. This figure is a plot of I (θ) against θ for a value
of kd/2 = 10π. The function

sin2[(kd/2) sin θ ]

[(kd/2) sin θ ]2
= sin2 β

β2
(7.26)

with β = (kd/2) sin θ is the square of a sinc function . It has its maximum value of
unity when β = 0. The maximum intensity Io thus occurs when θ = 0. The physical
interpretation of this is that the secondary wavelets from pairs of strips at positions
±x, respectively, will be in phase for θ = 0, resulting in maximum intensity. The
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Figure 7.12 The diffraction pattern of a single slit. The intensity I (θ) is plotted against the
angle θ that a line joining P to the centre of the slit makes with the horizontal as shown in
Figure 7.11. The value of λ/d = 0.1. The zeros of intensity in the diffraction pattern occur at
θ = ±nλ/d , where n = ±1,±2, . . . , under the small angle approximation sin θ � θ , which
is valid in this example.

intensity I (θ) will be zero whenever the numerator of Equation (7.26), sin2 β, is
zero but the denominator, β, is not. The first zeros in the intensity occur when

β = (kd/2) sin θ = ±π

and hence, using k = 2π/λ, when

sin θ = ±λ

d
. (7.27)

Importantly, we see that the degree of spreading depends upon the ratio λ/d. It
also depends on the wavelength which explains why we can hear sounds around
a corner but we cannot see around a corner. When λ 	 d, as in the case of light,
sin θ is essentially equal to θ , giving the first zeros in the diffraction pattern at

θ = ±λ

d
. (7.28)

In general, zeros in intensity occur when

θ = n
λ

d
, n = ±1, ±2, . . . . (7.29)

These zeros are shown in Figure 7.12 where the small angle approximation can be
assumed since kd/2 = 10π, which gives λ/d = 0.1.

The first zeros in intensity occur for values of θ such that the path difference
between the two ends of the slit is equal to one complete wavelength. We can
understand this in the following way. Imagine the single slit to be composed of
two slits, each of width d/2, placed side by side. Then the path difference between
wavelets from the centres of the two slits is λ/2, which is the condition for destruc-
tive interference. Similarly, other corresponding pairs of points on the two slits will
lead to destructive interference.
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We have considered the case of a plane wave incident upon a single slit. More-
over, the point P was sufficiently far from the slit that the secondary wavelets had
become plane waves by the time they reached P . When these conditions are satis-
fied we have Fraunhofer diffraction . If, however, the source of the primary waves
or P is so close to the slit that we have to take into account the curvature of the
incoming or outgoing wavefronts we have Fresnel diffraction . The case of Fresnel
diffraction is illustrated in Figure 7.13. Although we have an incident plane wave,
the point P is so close to the slit that we have to take into account the curvature
of the wavefront converging on P . (For convenience, we take P to be in line with
the centre of the slit.) Clearly, the path lengths from different points across the slit
to P will be different. Moreover, the path-length difference s at a distance x from

x

P

R

s

incident
plane wave

l

Figure 7.13 A plane wave is incident on a single slit. Point P is so close to the slit that
the curvature of the wave converging on P has to be taken into account in determining the
resultant amplitude at that point. This is an example of Fresnel diffraction.

the centre of the slit is not linearly proportional to x. It is easy to show that s is
given by

s � x2

2R
, (7.30)

when x2/R2 	 1. Hence the phase difference φ(x) for a point at x is

φ(x) � 2π

λ

x2

2R
, (7.31)

where λ is the wavelength. The phase difference has a quadratic dependence on
position x, which is a characteristic of Fresnel diffraction. This is in contrast to
Fraunhofer diffraction where we found that the path difference is linearly propor-
tional to x. [The path difference is equal to x sin θ , where θ is the direction of
the secondary wavelets, cf. Equation (7.21).] There is no sharp division between
Fraunhofer and Fresnel diffraction, the pattern changes continuously from one to
the other as the distance from the slit to P reduces. To illustrate the transition



Diffraction 177

P

L

bd

Figure 7.14 In Fraunhofer diffraction we require the curvature of the wavefront at a slit to
be sufficiently large that the wavefront can be considered to be planar, i.e. that the distance
L is sufficiently large that b 	 λ.

from Fraunhofer to Fresnel diffraction, Figure 7.14 shows a circular wavefront that
converges on a point P that is at a distance L from the slit. It is easy to show that

b � d2

8L
(7.32)

for d2/L2 	 1, where b is the distance between the circular wavefront and the
plane of the slit as shown. For Fraunhofer diffraction we require the curvature of
the wavefront to be sufficiently large that the wavefront can be considered to be
planar, i.e. that b be much less than the wavelength λ. Hence, we must have

L � d2

8λ
. (7.33)

When L reduces, so that it becomes comparable with d2/8λ, we have Fresnel
diffraction.

7.2.2 Circular apertures and angular resolving power

A circular aperture will also produce a diffraction pattern. This pattern will, of
course, have circular symmetry. For a plane wave that falls normally on a small
circular aperture, the diffraction pattern appears as a central bright disc surrounded
by a series of bright and dark rings. This central disc is called the Airy disc in
honour of Sir George Airy, a former Astronomer Royal of England, and contains
84% of the integrated light intensity. The dark rings correspond to the zeros of
intensity in the diffraction pattern. For an aperture of diameter d, the first zeros on
either side of the central maximum occur at angles ±θR, where

θR = 1.22
λ

d
. (7.34)
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This equation has the same form as Equation (7.28) but with the multiplying factor
1.22. The angular diameter of the central bright disc is equal to the angular distance
between these two zeros on either side of the central maximum, i.e. 2.44λ/d.
Consequently, when a lens or mirror images a point-like object such as a distant star,
it does not produce a point-like image even when lens aberrations can be discounted.
Instead the light is spread out into a diffraction pattern. This has important practical
consequences for image formation by lenses and mirrors since it limits their ability
to resolve closely spaced objects, like two stars that are close together in our field
of view. We are able to just resolve their images if the maximum of the diffraction
pattern from one object falls at the first minimum of the pattern from the other,
accordingly to the Rayleigh criterion . This is illustrated in Figure 7.15, which
shows the two diffraction patterns arising from two point objects. The dotted line
is the sum of the two diffraction patterns and illustrates that we can just distinguish
the two diffraction maxima. It follows that we would just be able to distinguish the
two point images. The angular separation of two objects is the same as the angular
separation of their images . Hence, two point objects are just resolvable by a lens
or mirror of diameter d when their angular separation θ satisfies

θ = 1.22
λ

d
. (7.35)

q

Figure 7.15 Two overlapping diffraction patterns at the image plane of a lens or mirror,
arising from two point objects. The dotted line is the sum of the two diffraction patterns.
The Rayleigh criterion states that the images of the two point objects can be just resolved
when the maximum of one diffraction pattern overlaps the first minimum of the other. This
is the case shown.

If two objects with a spatial separation b are at a large distance L from a lens
or mirror, then we can write θ = b/L. Hence we can just resolve them if b =
1.22λL/d. For example, if we assume a size of 3 mm for a human pupil and an
optical wavelength of 550 nm, we have

θ = b

L
= 1.22

λ

d
= 1.22

550 × 10−9

3 × 10−3
≈ 1

5000
.

This suggests that we can read a car number plate at a distance of ∼100 m, assuming
that we need to resolve features ∼2 cm apart. In radio astronomy the wavelengths
of interest are much longer than for visible light. For example, atomic hydrogen
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produces what is known as 21 centimetre radiation and this is used extensively
in radio astronomy. The diameter of the Lovell telescope at Jodrell Bank, UK, is
76 m. At the wavelength of 21 cm, it has an angular resolution ∼1/300 for which
θ ∼ 0.2◦. Similar considerations apply to microscopy. In an electron microscope
the wavelengths associated with the electrons may be 100,000 times shorter than
for visible light and so sharp images of extremely small objects can be obtained.
Diffraction also limits the amount of information that can be stored on optical
recording media like compact discs. There is no point in making the dimensions
of the pattern printed on the disc smaller than the diffraction limit of the optical
imaging system that is used to read it.

7.2.3 Double slits of finite width

We are now in a position to take into account the finite width of the slits in a real
Young’s double-slit experiment. As for the analysis of diffraction at a single slit,
we consider each of the two slits to be composed of infinitely narrow strips that
act as sources of secondary wavelets. Then the resultant amplitude R at a point P

is the superposition of the secondary wavelets from both slits. This is given by

R =
∫ −a/2+d/2

−a/2−d/2
αdx cos[ωt − k(l − x sin θ)]

+
∫ a/2+d/2

a/2−d/2
αdx cos[ωt − k(l − x sin θ)], (7.36)

where d is the width of each slit and a is their separation, cf. Equation (7.22).
Evaluating these integrals gives

R = 2αd cos(ωt − kl)
sin[(kd/2) sin θ ]

(kd/2) sin θ
cos[(ka/2) sin θ ]. (7.37)

The resultant intensity is

I (θ) = Io
sin2[(kd/2) sin θ ]

[(kd/2) sin θ ]2
cos2[(ka/2) sin θ ], (7.38)

where Io is the maximum intensity of the pattern. This result is the product of
two functions. The first is the square of a sinc function corresponding to diffrac-
tion at a single slit, cf. Equation (7.25). The second is the cosine-squared term
of the double-slit interference pattern, cf. Equation (7.10). These two functions
are displayed separately in Figure 7.16(b) and (a), respectively. The physical
interpretation of Equation (7.38) is that the double-slit interference pattern is mod-
ulated by the intensity pattern due to diffraction of the incoming plane wave at
each slit. The result of this modulation is shown in Figure 7.16(c), which is the
interference pattern for two slits of finite width. Both of the above functions,
i.e. the cosine squared and sinc squared functions, have maxima and minima
at particular values of θ . In particular, and for the small angle approximation
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(a)

(b)

(c)

Io

1.0

1.0

I(q)

q

q

q

Figure 7.16 (a) The cosine squared term appearing in Equation (7.38) corresponding to
interference fringes in a Young’s double-slit experiment with infinitely narrow slits, cf.
Equation (7.10). (b) The sinc squared function appearing in Equation (7.38) corresponding
to diffraction at a single slit, cf. Equation (7.25). (c) The observed interference pattern from
a Young’s double-slit experiment with slits of finite width; corresponding to the modulation
of the cosine squared term in (a) by the sinc squared function in (b). The small angle
approximation, sin θ � θ , has been used.

sin θ � θ used in Figure 7.16, double-slit interference maxima occur at angles
given by

θ = nλ

a
, n = 0, ±1, ±2, . . . , cf. (7.12)

while zeros in the diffraction pattern occur at angles given by

θ = nλ

d
, n = 0, ±1, ±2, . . . . cf. (7.29)

Clearly if an interference maximum occurs at a zero in the diffraction pattern,
that bright fringe will be absent from the observed pattern. In the example shown
in Figure 7.16 the ratio a : d = 4 : 1 and consequently the n = 4 bright fringe is
missing.

We obtained Equation (7.38) by considering the diffraction pattern observed for
two slits of finite width. However, it is an example of a more general result: the
diffraction pattern from a system consisting of any number of slits will always
have an envelope corresponding to single slit-diffraction modulating the multi-slit
interference pattern. This occurs, for example, in the case for a diffraction
grating.
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PROBLEMS 7

(Take the velocity of sound in air to be 340 m s−1.)

7.1 (a) In a Young’s double-slit experiment, it is found that ten bright interference fringes
span a distance of 1.8 cm on a screen placed 1.0 m away. The separation of the two
slits is 0.30 mm. Determine the wavelength of the light. (b) Light from a helium-neon
laser with wavelength 633 nm is incident upon two very narrow slits spaced 0.50 mm
apart. The viewing screen is placed a distance of 1.5 m beyond the slits. What are the
distances between (i) the two n = 2 bright fringes and (ii) the two n = 2 dark fringes?

7.2 In a Young’s double-slit experiment, the angular separation of the interference fringes
on a distance screen is 0.04◦. What would be the angular separation if the entire
apparatus were immersed in a liquid of refractive index 1.33?

7.3 Plane waves of monochromatic light of wavelength 500 nm are incident upon a pair of
very narrow slits producing an interference pattern on a screen. When one of the slits
is covered by a thin film of transparent material of refractive index 1.60 the central
(n = 0) bright fringe moves to the position previously occupied by the n = 15 bright
fringe. What is the thickness of the film?

7.4 (a) Estimate the divergence angle of the sunlight we receive on Earth given that the
diameter of the Sun is 1.4 × 106 km and its distance from the Earth is 1.5 × 108 km.
(b) In a Young’s double-slit experiment, the slit spacing is 0.75 mm and the wavelength
of the incident light is 550 nm. What should be the maximum divergence angle of the
source for the interference fringes to be clearly visible? Compare this value with your
answer from (a).

7.5 The two slits in a Young’s double-slit experiment each have a width of 0.06 mm and
are separated by a distance a. If an n = 15 bright fringe of the double-slit interference
pattern falls at the first minimum of the diffraction pattern due to each slit, what is the
value of the separation of the slits a?

7.6 Two loudspeakers are separated by a distance of 1.36 m. They are connected to the
same amplifier and emit sound waves of frequency 1.0 kHz. How many maxima
in sound intensity would you hear if you walked in a complete circle around the
loudspeakers at a large distance from them? Assume that the sound waves are emitted
isotropically.

7.7 (a) Monochromatic light is directed into a Michelson spectral interferometer. It is
observed that 4001 maxima in the detected light intensity span exactly 1.0 mm of mir-
ror movement. What is the wavelength of the light? (b) Light from a sodium discharge
lamp is directed into a Michelson spectral interferometer. The light contains two wave-
length components having wavelengths of 589.0 nm and 589.6 nm, respectively. The
interferometer is initially set up with its two arms of equal length so that a maximum
in the detected light is observed. How far must the moveable mirror be moved so that
the 589.0 nm component produces one more maximum in the detected intensity than
the 589.6 nm component?

7.8 A gas cell of length 8.0 cm is inserted into the light path in one of the arms of a
Michelson spectral inteferometer. Light from a helium-neon laser with wavelength
633 nm is directed into the interferometer. Initially the gas cell is evacuated of air and
the interferometer is adjusted for maximum intensity at the detector. Air is then slowly
leaked into the gas cell until the pressure reaches atmospheric pressure. As this is done
it is found that the light intensity at the detector passes from maximum to minimum
intensity and back to maximum intensity exactly 90 times. Use these data to determine
the refractive index of air at atmospheric pressure.

7.9 If you clap your hands at the centre of a Roman amphitheatre, you may hear a sound
similar to that produced by a plucked string. Explain this phenomenon and estimate
the frequencies involved.
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7.10 (a) A car is travelling towards you on a long straight road at night. Estimate the
distance at which you can just resolve its headlights into two separate sources of light.
Would the light from the two separate headlights produce any interference effects? (b)
The Hubble Space Telescope has a diameter of 2.4 m. Determine its diffraction-limited
angular resolution at a wavelength of 550 nm in radians and in degrees.

7.11

pin hole

object

plane of film

inverted
image

The figure illustrates the principle of operation of a pin-hole camera, which produces
an inverted image of an object at the plane of the film. This image becomes blurred if
the diameter d of the pin hole is too large or too small. (a) Explain why this blurring
occurs for both the above cases. (b) The pin hole has an optimum diameter when
the two effects above give rise to the same amount of blurring. Show that for distant
objects, the optimum value of d ≈ √

2.44λl, where λ is the wavelength and l is the
distance between the pin hole and the plane of the film. (c) Using an appropriate value
of λ, evaluate the optimum value of d for l = 15 cm.



8
The Dispersion of Waves

In our discussion of waves so far, we have considered the velocity of a wave to be
independent of its frequency. In some important cases this is true. The velocity of
electromagnetic waves in a vacuum is independent of frequency. To a very good
approximation, the velocity of sound waves in air is also independent of frequency.
This is just as well since otherwise the members of the audience sitting at the back
of an auditorium would have a very different musical experience to those sitting
at the front. And, in our discussion of transverse waves on a taut string, we found
that the velocity of the waves, v = √

T /µ is independent of frequency. In general,
however, the velocity of a wave in a medium does depend on its frequency. This is
called dispersion and the medium in which the wave travels is called a dispersive
medium . A familiar example of this is the separation of white light into the colours
of the rainbow by a glass prism. The light is dispersed because the velocity of light
in glass varies with frequency. In many situations, we do not deal with a single wave
but rather with a group of waves having different frequencies. The superposition
of these waves leads to a modulated wave. In a dispersive medium, the individual
waves in the group travel at different velocities and change their relative positions
as they propagate. Consequently, the modulation of the wave travels at a velocity,
called the group velocity , which is different from the velocities of the waves in
the group. We first consider, in Section 8.1, the superposition of waves and their
propagation in non-dispersive media. In Section 8.2 we extend our discussion to
the propagation of waves in dispersive media.

8.1 THE SUPERPOSITION OF WAVES IN NON-DISPERSIVE MEDIA

The travelling wave ψ = A cos(kx − ωt) is described as monochromatic because
it has a single frequency ω and a single wavelength λ (= 2π/k). Moreover, it
extends to ± infinity along the x-axis. (In practice this is unrealistic and a real wave
has a beginning and an end, although its length may be considerable. For example,

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd



184 The Dispersion of Waves

researchers have used lasers to produce monochromatic light waves many kilome-
tres long.) A monochromatic wave cannot carry any information since its amplitude
and frequency do not vary. To send information we need to modulate the wave in
some way as is done, for example, in the transmission of Morse code. A modulated
wave consists of the superposition of a group of waves of different frequencies.
We have already met the superposition of waves in, for example, the formation of
standing waves. There the waves travelled in opposite directions. Here we consider
the superposition of waves travelling in the same direction. We shall consider the
phenomenon of beats and also the amplitude modulation of radio waves where it
is clearly the intention to transmit information.

8.1.1 Beats

The simplest superposition we can have consists of two monochromatic waves

ψ1 = A cos(k1x − ω1t), ψ2 = A cos(k2x − ω2t), (8.1)

that have the same amplitude A but different frequencies ω1 and ω2, respectively.
In a non-dispersive medium, the two waves travel at the same velocity:

v = ω1

k1
= ω2

k2
. (8.2)

The superposition of the two waves gives

ψ = ψ1 + ψ2 = A cos(k1x − ω1t) + A cos(k2x − ω2t). (8.3)

Using the identity

cos(α + β) + cos(α − β) = 2 cos α cos β (8.4)

and letting

(α + β) = (k2x − ω2t), (α − β) = (k1x − ω1t) (8.5)

we obtain

ψ = 2A cos

[
(k2 − k1)

2
x − (ω2 − ω1)

2
t

]
cos

[
(k2 + k1)

2
x − (ω2 + ω1)

2
t

]
. (8.6)

We consider how ψ varies at a fixed value of position x. This would be the situation,
for example, where a superposition of two sound waves impinges on our eardrum.
For convenience we take x = 0, so that Equation (8.6) becomes

ψ = 2A cos

[
(ω2 − ω1)

2
t

]
cos

[
(ω2 + ω1)

2
t

]
. (8.7)

The result is the product of two cosine terms with frequencies of (ω2 − ω1)/2
and (ω2 + ω1)/2, respectively. This is a general result that applies to any two
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frequencies ω2 and ω1. However, this result is particularly interesting when the
two frequencies are nearly the same, i.e. ω1 ≈ ω2. We then have a wave of fre-
quency (ω2 + ω1)/2 that is multiplied, i.e. modulated, by a term that varies much
more slowly, since (ω2 − ω1)/2 	 (ω2 + ω1)/2. This situation is illustrated by
Figure 8.1(a) which shows the two monochromatic waves, and Figure 8.1(b) which
shows their superposition. We see that the waves sometimes add constructively and
sometimes destructively because of their different frequencies. This phenomenon
is called beats . The resultant wave is contained within an envelope shown by the
dotted lines in Figure 8.1(b). The envelope is periodic as given by Equation (8.7)
with the two dotted lines being defined by ±2A cos[(ω2 − ω1)t/2]. We can rewrite
Equation (8.7) in the form

ψ = A(t) cos ωot, (8.8)

where ωo = (ω2 + ω1)/2 and the amplitude A(t) is given by

A(t) = 2A cos

[
(ω2 − ω1)

2
t

]
. (8.9)

1 modulation cycle

t

1 beat

(a)

(b)

(c)

ψ1

ψ2

t

t

t

A(t)2

ψ = ψ1 + ψ2

Figure 8.1 (a) Two monochromatic waves ψ1 and ψ2, having the same amplitude but
slightly different frequencies. (b) The superposition ψ of the two waves showing the resulting
beat pattern. (c) The square of the amplitude of the modulation A(t)2, which reaches a
maximum value twice during each period of the beat pattern.

The wave described by Equation (8.8) is not a true sinusoidal wave since its
amplitude varies. However, under the condition that ω1 ≈ ω2, the variation will
be slow and there will be many high frequency oscillations within each period of
the envelope, as in the example of Figure 8.1(b). It is reasonable then to describe
Equation (8.8) as a sinusoidal wave of frequency ωo, although one with a slowly
varying amplitude.
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An example of beats occurs when we simultaneously strike two tuning forks
that have slightly different frequencies. We hear a note with a well defined pitch
but with a sound intensity that rises and falls periodically. In this example ψ1

and ψ2 represent the two sound waves emitted by the tuning forks where each is a
measure of the pressure variation in the air. ψ is the superposition of the two sound
waves. The intensity, or loudness, of the sound is proportional to ψ2 and hence
is proportional to A(t)2, which is shown in Figure 8.1(c). The frequency of the
modulation is (ω2 − ω1)/2, Equation (8.7). However, A(t)2 reaches a maximum
twice during each period of the modulating term. It follows that the sound will
reach maximum intensity at twice the frequency of the modulation and so the beat
frequency is just the difference between the frequencies of the two tuning forks. For
example, if we had one fork tuned to 439 Hz and the other to 401 Hz, we would
hear a note of frequency 440 Hz and a beat frequency of 2 Hz. The method of beats
is commonly used to tune string instruments. A string of the instrument is plucked
while a tuning fork of the required frequency is struck simultaneously. Beats are
heard if the two are slightly out of tune. Tuning is accomplished by adjusting the
tension in the string until the beat frequency reduces to zero. A person can discern
beats up to a maximum frequency of about 5–10 Hz. Above this, the sound is
heard as two separate notes.

There are many examples of physical phenomena where two harmonic oscilla-
tions of slightly different frequency combine together. The system of two pendu-
lums coupled by a weak spring posseses two normal modes with slightly different
frequencies. Consequently, the general motion of the system exhibits a pattern of
beats, cf. Section 4.3. Twin-engined, turbo-prop aeroplanes may also produce beats
if the two engines run at nearly the same frequency. This produces loud throbbing
sounds that can lead to passenger sickness. In practice this is avoided by slightly
changing the frequency of one of the engines.

8.1.2 Amplitude modulation of a radio wave

Electromagnetic waves are widely used for the purpose of communication as
in radio transmissions and mobile telephones. One method of radio transmission
employs amplitude modulation (AM). Here, the amplitude of a sinusoidal electro-
magnetic wave, called the carrier wave, is varied to carry the required information
which might be speech or music. The principle of AM is illustrated in Figure 8.2(a).
Here, the amplitude of the carrier wave of frequency ωc is modulated by a sinusoidal
wave of much lower frequency ωm. The resultant wave can be represented by

ψ = (A + B cos ωmt) sin ωct. (8.10)

B is called the depth of modulation , which must be less than A to avoid distortion
of the signal at the receiver. Using the trigonometric identity

sin α cos β = 1

2
[sin(α + β) + sin(α − β)] (8.11)

we can rewrite Equation (8.10) as

ψ = A sin ωct + B

2
[sin(ωc + ωm)t + sin(ωc − ωm)t]. (8.12)
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Figure 8.2 (a) The principle of AM radio transmission. A carrier wave of frequency ωc is
modulated by a sinusoidal wave of frequency ωm, where ωm 	 ωc. The resultant waveform
ψ is shown for x = 0. (b) The frequency spectrum of the modulated carrier wave showing
the frequency components present.

Inspection of Equation (8.12) shows that there are three frequency components
present in the modulated wave. These are the carrier frequency ωc and the
frequencies (ωc + ωm) and (ωc − ωm). We can represent these components as a
frequency spectrum as shown in Figure 8.2(b). In this spectrum the heights of the
lines represent the amplitudes of the frequency components and in this particular
example, B = A/3. Of course a real audio signal contains a continuous range of
frequencies, typically 10 Hz to 10 kHz, and so ωm will have this range also. (This
compares with the carrier frequency which is typically ∼1 MHz, i.e. ωc � ωm.)
Consequently there is a band of frequencies on either side of the central frequency
ωc, which are called side bands . It follows that adjacent radio stations must have
carrier frequencies that differ by more than 2ωm. (In more sophisticated AM
transmission systems, only the frequencies of a single side band are transmitted
so that more radio stations can fit into the available frequency range.)

8.2 THE DISPERSION OF WAVES

In a non-dispersive medium, the velocity of a wave is independent of the
wavenumber k, i.e. v = ω/k = constant, and

ω = constant × k.

In a dispersive medium the velocity v = ω/k does depend on the wavenumber k,
and so also will the frequency ω = vk. The relationship between the frequency
ω and the wavenumber k is called the dispersion relation of the medium. The
dispersion relation is determined by the physical properties of the medium. Different
media will, in general, have different dispersion relations and these will lead to
different wave behaviours. In Section 8.3 we shall illustrate these different types of
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behaviour. Here we want to discuss the general case and in particular to illustrate
the difference between phase velocity and group velocity . For this it will suffice to
note that in a dispersive medium the frequency ω is a function of the wavenumber
k: ω = ω(k).

8.2.1 Phase and group velocities

We again consider the superposition of two monochromatic waves:

ψ1 = A cos(k1x − ω1t), ψ2 = A cos(k2x − ω2t), (8.1)

that have the same amplitude but slightly different frequencies, so that ω1 ≈ ω2.
The analysis is similar to that of Section 8.1.1. The superposition of ψ1 and ψ2 is
given by the same Equation (8.6) as before:

ψ = 2A cos

[
(k2 − k1)

2
x − (ω2 − ω1)

2
t

]
cos

[
(k2 + k1)

2
x − (ω2 + ω1)

2
t

]
. (8.6)

The difference here is that the medium is dispersive and so the two waves have
different velocities given by v1 = ω1/k1 and v2 = ω2/k2, respectively. We let

ko = (k2 + k1)

2
, ωo = (ω2 + ω1)

2
(8.13)

where ko and ωo are the mean values of the wave numbers and frequencies, respec-
tively. Since the differences between ω1 and ω2 and between k1 and k2 are small,
we write

(k2 − k1)

2
= �k,

(ω2 − ω1)

2
= �ω. (8.14)

In this case, Equation (8.6) can be written as

ψ = A(x, t) cos(kox − ωot) (8.15a)

where

A(x, t) = 2A cos(x�k − t�ω). (8.15b)

Equation (8.15a) represents a wave that has a frequency ωo, a wavenumber ko and
velocity v given by

v = ωo

ko
. (8.16)

The velocity v is called the wave or phase velocity. The amplitude of the wave
A(x, t) is modulated according to Equation (8.15b) and this modulation forms an
envelope that contains the wave. This envelope is represented by the dotted lines in
Figure (8.3). The envelope also travels forward with the wave but it does so with
a velocity that, in general, is different from the phase velocity of the wave. A crest
of the envelope will travel at the envelope velocity, as depicted by the bold dots in
Figure (8.3). The amplitude of this crest remains constant as the envelope travels
along, i.e. the crest maintains a constant value of modulation amplitude A(x, t).
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Figure 8.3 The propagation of the modulated wave ψ in a dispersive medium. ψ is plotted
against x at successive, equal intervals of time δt . The wave is shown as a solid line and
is contained within the envelope of the modulation, which is represented by the dotted
lines. The vertical arrows indicate a particular crest of the wave that travels at the phase
velocity v. The bold black dots indicate a particular crest of the envelope that travels at the
group velocity vg . In this example v >vg and so the wave crest moves forward through the
envelope as the wave propagates, as can be seen from the changing relative positions of the
bold dots and arrows.

From Equation (8.15b), the condition A(x, t) = constant, reduces to

x�k − t�ω = constant

Differentiating this equation with respect to t , we obtain the velocity at which the
envelope travels:

vg ≡ dx

dt
� �ω

�k
= ω2 − ω1

k2 − k1
. (8.17)

This velocity vg is called the group velocity. Since ω is a function of wavenumber
k in a dispersive medium, we write Equation (8.17) as

vg = ω(k2) − ω(k1)

k2 − k1
. (8.18)
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Using Taylor’s theorem, Equation (1.24), we have

ω(ko ± �k) = ω(ko) ± (�k)

(
dω

dk

)
k=ko

+ terms proportional to (�k)2, (�k)3, . . . , (8.19)

where �k = (k2 − k1)/2, Equation (8.14). When �k is small compared with ko,
we need only retain linear terms in Equation (8.19). Hence in Equation (8.18), we
can write

ω(k2) − ω(k1) = (k2 − k1)

(
dω

dk

)
k=ko

(8.20)

and the equation for the group velocity, Equation (8.18), becomes

vg =
(

dω

dk

)
k=ko

. (8.21)

We see that the group velocity is equal to the derivative of ω with respect to k,
evaluated at the mean wavenumber ko.

The difference between phase and group velocity is illustrated by Figure 8.3
which represents the propagation of the modulated wave ψ , Equation (8.15a), in
a dispersive medium. The figure shows ψ plotted against x at successive instants
of time separated by equal time intervals δt . The wave is shown as a solid line
contained within the envelope of the modulation, which is shown as the dotted
lines. The vertical arrows indicate a particular crest of the wave which travels at
the phase velocity v = ωo/ko. The bold black dots indicate a particular crest of the
envelope which travels at the group velocity, vg = (dω/dk)k=ko . In this example
v > vg and so the wave crest moves forward through the envelope as the modulated
wave propagates. This can be discerned from the changing relative positions of the
bold dots and arrows.1

We have obtained expressions for the phase and group velocities using the
example of the superposition of just two monochromatic waves. These expres-
sions, however, apply to any group of waves so long as their frequency range is
narrow compared to their mean frequency. Thus for the general case, we define
the phase velocity v as

v = ω

k
, (8.22)

and the group velocity vg as

vg = dω

dk
. (8.23)

A good way to observe the behaviour of a group of waves and to appreciate the
difference between phase and group velocities is to make water ripples by throwing

1 Figure 8.3 was generated using a spreadsheet program where it is straightforward to change the ratio
of phase and group velocities. The reader is strongly encouraged to try this exercise.



The Dispersion of Waves 191

a stone into a still pond. What we observe is a group of ripples expanding outwards.
For such water waves, the phase velocity is greater than the group velocity. Thus
each ripple appears at the rear of the envelope of the group, proceeds through it and
then disappears at the front with a new ripple appearing at the rear, cf. Figure 8.3.

The expression for the group velocity, Equation (8.23), may be rewritten in
various different forms. For example, since v = ω/k, Equation (8.22), we have

vg = dω

dk
= d(kv)

dk
= v + k

dv

dk
= v + k

dv

dλ

dλ

dk
.

Since k = 2π/λ,

dλ

dk
= −λ

k
.

and hence

vg = v − λ
dv

dλ
. (8.24)

Usually dv/dλ is positive and so vg < v. This is called normal dispersion . Anoma-
lous dispersion occurs when dv/dλ is negative so that vg > v. If there is no
dispersion, dv/dλ = 0 and the group and phase velocities are equal.

Worked example

The yellow light from a sodium lamp has two components with wavelengths
of 589.00 nm and 589.59 nm. The refractive index n of a particular glass at
these wavelengths has the values 1.6351 and 1.6350, respectively. Determine
(i) the phase velocities of the light at these two wavelengths in the glass and
(ii) the velocity of a narrow pulse of sodium light that is transmitted through
the glass.

Solution

(i) Since n = c/v:

At 589.00 nm, v = c/1.6351 = 0.61158c, and at 589.00 nm, v = 0.61162c.

(ii) The light pulse travels at the group velocity. From n = c/v:

dv

dλ
= dv

dn

dn

dλ
= − c

n2

dn

dλ
= −v

n

dn

dλ
.

Hence from Equation (8.24)

vg = v − λ

(
−v

n

dn

dλ

)
= v

(
1 + λ

n

dn

dλ

)
.
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Taking

v = (0.61162 + 0.61158)c

2
,

vg = 0.61160c

[
1 + 589.295

1.63505

(
−0.0001

0.59

)]
= 0.5742c.

When we measure the velocity of light with experimental methods using
mechanical choppers, we are in fact measuring the group velocity since
these methods modulate the light.

8.3 THE DISPERSION RELATION

The dispersion relation for a medium describes how the frequency of a wave ω

depends on the wavenumber k. Various dependencies of ω upon k are shown in
Figure 8.4. If there is no dispersion a plot of ω against k is a straight line as shown
by curve (b), corresponding to:

v = ω

k
= constant, vg = dω

dk
= v.

P

(b)

(a)

(c)

k
0

w

Figure 8.4 Plots of frequency ω against wavenumber k for various dispersion relations,
ω = ω(k). The straight line, curve (b), corresponds to the non-dispersive case. Curve (a)
corresponds to anomalous dispersion while curve (c) corresponds to normal dispersion,
where the slope dω/dk is always less than the gradient ω/k at any point on the curve.

In a dispersive medium a plot of ω against k is nonlinear. For example, curve (c),
for a particular dispersive medium, bends ‘downwards’ as k increases. As illustrated
by Figure 8.4, the slope dω/dk of this curve at any point, e.g. point P , is always
less than the gradient ω/k at that point so that the group velocity vg is always
less than the phase velocity v. This is the case of normal dispersion, cf. Equation
(8.24). The slope of curve (a), however, bends ‘upwards’ with increasing k and so
vg is always greater than v. This is the case of anomalous dispersion, cf. Equation
(8.24).
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We can apply these considerations to the propagation of electromagnetic waves.
In vacuum, electromagnetic waves propagate with a velocity

v = 1√
εoµo

= constant, (8.25)

where εo and µo are the permittivity and permeability of free space, respectively.
The velocity, which is the velocity of light, is independent of frequency and the
dispersion relation is linear. Consequently, the phase and group velocities are equal.
In a dielectric material electromagnetic waves travel with a velocity

v = 1√
εµ

(8.26)

where ε and µ are the permittivity and permeability of the material, respectively.
The refractive index n is given by

n = c

v
=

√
µε

µoεo
= √

µrεr , (8.27)

where εr = ε/εo and µr = µ/µo are the relative permittivity and permeability of
the material, respectively. For most materials µr is constant and approximately
equal to 1, but εr does vary with frequency giving, v = constant/

√
εr . We find the

group velocity of the electromagnetic waves from Equation (8.24) using

dv

dλ
= dv

dεr

dεr

dλ
=

(
−1

2

v

εr

)
dεr

dλ
,

to obtain

vg = v − λ
dv

dλ
= v

(
1 + λ

2εr

dεr

dλ

)
. (8.28)

In a medium for which dεr/dλ < 0, it follows that vg < v and we have normal
dispersion. In a medium for which dεr/dλ > 0, vg > v and we have anomalous
dispersion. Dispersion of electromagnetic waves also occurs in the propagation of
radio waves in the ionosphere. The ionosphere consists of a gas with some of
the molecules ionised by ultraviolet radiation from the sun. Each singly ionised
molecule yields a positively charged ion and a free electron. The charged particles
affect the velocity of electromagnetic waves that pass through the ionosphere and
the resulting dispersion relation is

ω2 = ω2
o + c2k2 (8.29)

for frequencies greater than ωo where ωo is a constant called the plasma oscillation
frequency . From Equation (8.29), the phase velocity is given by

v = ω

k
= c√

(1 − ω2
o/ω

2)
. (8.30)
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Differentiating Equation (8.29) gives

2ωdω = c22kdk.

Hence the group velocity is given by

vg = dω

dk
= c2 k

ω
= c

√
(1 − ω2

o/ω
2). (8.31)

Equation (8.30) shows that the phase velocity exceeds the velocity of light c, which
appears to violate the special theory of relativity. This theory, however, says that
a signal cannot propagate at a speed greater than c. Signals travel at the group
velocity and Equation (8.31) shows that this is always less than c. We see from
Equations (8.30) and (8.31) that

v × vg = c2. (8.32)

Worked example

When a wave is present on the surface of water there are two types of restoring
force that tend to flatten the surface; these forces are gravity and surface tension.
The relative strengths of these forces depend upon the wavelength of the waves.
For waves on deep water, where the wavelength is small compared with the
depth of the water, the angular frequency ω and wavenumber k are related by
the dispersion relation

ω2 = gk + Sk3

ρ
,

where g is the acceleration due to gravity, and S and ρ are the density and
surface tension of water, respectively. Deduce the ratio of the group and phase
velocities for (i) the limit of short wavelength and (ii) the limit of long wave-
length. At what wavelength are the two velocities equal? (The density and
surface tension of water are 1.0 × 103 kg m−3 and 7.2 × 10−2 N m−1, respec-
tively; the acceleration due to gravity is 9.81 m s−2.)

Solution
Since

ω =
(

gk + Sk3

ρ

)1/2

, (8.33)

v = ω

k
=

(
g

k
+ Sk

ρ

)1/2

. (8.34)

(i) In the limit of short wavelength, λ → 0 and k → ∞, and

v =
(

Sk

ρ

)1/2

= ω

k
, giving ω =

(
Sk3

ρ

)1/2

.
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Hence,

vg = dω

dk
= 3

2

(
Sk

ρ

)1/2

= 3

2
v.

(ii) In the limit of long wavelength, k → 0, and

v =
(g

k

)1/2
giving ω = (gk)1/2.

Hence,

vg = 1

2

(g

k

)1/2
= 1

2
v.

To find the wavelength at which the two velocities are equal, we have from
Equation (8.34),

vg = dω

dk
= 1

2ω

(
g + 3Sk2

ρ

)
= 1

2

(
gk + Sk3

ρ

)−1/2 (
g + 3Sk2

ρ

)
.

Putting vg = v, using Equation (8.34) for v, and simplifying, we obtain

k =
(gρ

S

)1/2
,

giving,

λ = 2π

k
= 2π

(
7.2 × 10−2

9.81 × 103

)1/2

= 1.7 × 10−2 m.

For wavelengths much greater than this value, the wave motion is dominated
by gravity. For wavelengths much less than this, it is dominated by surface
tension.

8.4 WAVE PACKETS

When we superpose i.e. sum two monochromatic waves with nearly equal fre-
quencies we obtain a pattern of beats as shown in Figure 8.1. Of course, we can
have a group of many waves having different frequencies and in most physical
situations this is usually the case. The different frequencies may be discrete or they
may cover a continuous range. (We are familiar with the concept of a continuous
frequency distribution in the case of white light that contains a continuous range of
frequencies from blue to red light.) Figure 8.5(a) illustrates an important example
of a continuous frequency distribution that occurs in many physical situations.
This distribution lies symmetrically about a central frequency ωo and has a width
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(a)

(b)

wo

∆w

∆t

t

w

Figure 8.5 (a) An important example of a continuous frequency distribution that occurs in
many physical situations. This distribution lies smoothly and symmetrically about a central
frequency ωo. The width �ω of the distribution is small compared with ωo. (b) The wave
packet, of temporal width �t , resulting from the superposition of the frequency components
of the distribution in (a).

�ω that is small compared with ωo. It also has a smooth profile. The result of
superposing the frequency components of this distribution is shown on a time axis
in Figure 8.5(b). We obtain a pulse of waves or wave packet that is highly localised
in time with a width �t . The wave packet travels at the group velocity which is
given by the same equation (8.23), vg = dω/dk, that we had for the case of just
two monochromatic waves. The energy is concentrated around the amplitude maxi-
mum and travels at the group velocity as does any information carried by the wave
packet. In Section 8.4.1 we will show that the width �ω of the frequency distribu-
tion and the temporal width �t of the wave packet are related by �t�ω ≈ 2π. This
is called the bandwidth theorem . This is a very important and general result that
applies to a wide range of physical phenomena where there is a disturbance ψ(t)

that is localised in time, i.e. some sort of wave pulse. This relationship between
�t and �ω does not depend on the specific shape of ψ(t) so long as it has the
characteristic that defines a pulse, i.e. that ψ(t) is different from zero only over
the limited time interval �t . It follows that to obtain pulses of shorter duration �t ,
we have to increase the range of frequencies �ω.

There are many examples of wave pulses and packets in physical situations. For
example, narrow pulses of light are passed down optical fibres for communication
purposes. Higher data transmission rates require pulses of very short duration �t .
Consequently, the sending and receiving equipment needs to operate over corre-
spondingly high frequency bandwidths. On the research side, scientists are making
wave packets of light that contain just a few cycles of optical oscillation, cor-
responding to pulse lengths of femtoseconds (∼10−15 s). Wave packets also have
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special significance in quantum mechanics. There they are interpreted as probability
waves that describe the position of a particle.

8.4.1 Formation of a wave packet

To illustrate the formation of a wave packet we first consider the superposition
of a group of monochromatic waves having a set of discrete wavenumbers. Each
wave has the form ψn = an cos(knx − ωnt) and their superposition is given by

ψ =
∑

n

an cos(knx − ωnt). (8.35)

Figure 8.6(b) shows the superposition of a group of eleven such waves and is a
snapshot of the resultant wave packet at time t = 0. Figure 8.6(a) shows some of
the individual waves making up the superposition. [For the sake of clarity only
alternate waves are shown and note that Figure 8(a) and (b) have different vertical
scales.] These waves have the same amplitude a but their wavenumbers kn range
from ko − 5δk to ko + 5δk in steps δk where δk 	 ko. All the individual waves
are in phase at x = 0 and the amplitude of the superposition at that point is equal

x

(b)

(a)

x = 0

ko − 4δk

ko − 2δk

ko + 4δk

ko + 2δk

ko, wo

ψ

Figure 8.6 (a) Some of the eleven monochromatic waves, contributing to the superposition
shown in (b). (Only alternate waves are shown for the sake of clarity.) The eleven waves
have the same amplitude but their wavenumbers increase steadily in small steps δk about
a mean wavenumber ko. (b) The wavepacket resulting from the superposition of the eleven
waves. The amplitude of the superposition is 11a at x = 0 when all the eleven waves are in
phase with each other. The wavenumber of the wave is equal to the mean ko of the eleven
waves. Note that (a) and (b) have different vertical scales.
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to 11a. As we go away from x = 0 in either direction, however, the waves go
increasingly out of phase and this leads to a reduction in the amplitude of the
superposition, i.e. the formation of a localised wave packet. Equation (8.35) can
be recast in the following form:

ψ = A(x, t) cos(kox − ωot), (8.36)

where

A(x, t) = a
sin[n(xδk − tδω)/2]

sin[(xδk − tδω)/2]
(8.37)

and n is the number of waves in the group. In analogy to the case of just two
monochromatic waves (see Section 8.2.1), the wave travels at the phase velocity
ωo/ko with a wavenumber equal to the mean ko of the eleven monochromatic waves
while the wave packet travels at the group velocity dω/dk.

Suppose now that we have a group of waves that have a continuous distribution
of wavenumbers. Then, the summation of Equation (8.35) is replaced by an integral
of the form

ψ =
∫

a(k) cos(kx − ωt)dk. (8.38)

Figure 8.7(a) represents such a continuous distribution of wavenumbers, centred
at wavenumber ko with a width �k that is small compared with ko. The wave
amplitude a(k) in Equation (8.38) is given by

a(k) =
a, if |k − ko| � �k/2

0, if |k − ko|> �k/2,

and we are assuming that �k 	 ko. The superposition of the corresponding group
of waves is

ψ = a

∫ ko+�k/2

ko−�k/2
cos(kx − ωt)dk. (8.39)

Using Taylor’s theorem and assuming that the range of wavenumbers is sufficiently
small so that we need retain only the linear term, cf. Equation (8.19), we have

ω = ωo + α(k − ko), (8.40)

where ωo = ω(ko) and

α ≡
(

dω

dk

)
k=ko

. (8.41)

Hence, substituting Equation (8.40) for ω in (kx − ωt):

kx − ωt = kx − [ωo + α(k − ko)]t = k(x − αt) − βt
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(b)

(a)

∆ka

a(k)

k

(ko − ∆k/2) (ko + ∆k/2)ko

−2π/∆k +2π/∆k0

x

∆x
y

Figure 8.7 (a) A continuous distribution of wavenumbers, centred at wavenumber ko with
a width �k that is small compared with ko and a constant amplitude a. (b) The wave packet
that results from the superposition of the continuous distribution in (a). The width of the
wave packet is taken to be equal to 2π/�k.

where β ≡ ωo − αko. We introduce ξ = k(x − αt) − βt as the new variable of
integration. Hence

dξ = (x − αt)dk,

and we can rewrite Equation (8.39) as

ψ = a

∫ ξ2

ξ1

cos ξdξ

(x − αt)

with the range of integration from ξ1 = (ko − �k/2)(x − αt) − βt to ξ2 = (ko +
�k/2)(x − αt) − βt . Hence,

ψ = a

(x − αt)
(sin ξ2 − sin ξ1).

Using the trigonometric identity

sin ξ2 − sin ξ1 = 2 sin [(ξ2 − ξ1)/2] cos [(ξ2 + ξ1)/2], (8.42)



200 The Dispersion of Waves

we obtain

ψ = A(x, t) cos(kox − ωot) (8.43)

where

A(x, t) = a�k
sin[�k(x − αt)/2]

�k(x − αt)/2
, (8.44)

cf. Equations (8.36) and (8.37). Equation (8.43) represents a wave of wavenumber
ko, frequency ωo and phase velocity = ko/ωo, that is contained within an envelope
given by A(x, t). A snapshot of ψ is shown in Figure 8.7(b), for t = 0, and we
can see that its amplitude is localised in time, i.e. we have a wave packet. The
velocity of the envelope is, i.e. the wave packet, obtained from A(x, t) = constant,
i.e. (x − αt) = constant, cf. Equation (8.17), giving the familiar result,

vg = dx

dt
= α ≡

(
dω

dk

)
k=ko

.

We have assumed that the spread in wavenumbers �k is small compared with ko so
that we need only retain the linear term in the expansion of the dispersion relation,
Equation (8.40). Under this condition, the envelope of the wavepacket retains its
shape as it propagates.2 This shape is found by taking t = 0 in Equation (8.44):

A(x) = a�k
sin(x�k/2)

x�k/2
. (8.45)

The function [sin(x�k/2)]/(x sin �k/2) is the now familiar sinc function. At x =
0, it has the value unity. It first becomes equal to zero when x�k/2 = ±π, giving

x = ± 2π

�k
. (8.46)

�k is the width of the wavenumber distribution, see Figure 8.7(a). For a measure
of the width �x of the wave packet we could chose the distance between the first
two zeros of A(t), i.e. the first two zeros of the sinc function. However, in practice
it is more usual to take one half of this value, i.e. �x = 2π/�k. We thus find that
the product of the wavenumber spread �k and the width �x of the resultant wave
packet is given by

�x�k ≈ 2π (8.47)

where the symbol ≈ indicates the imprecision in the measure of the wave packet
width. This is an example of the bandwidth theorem that we introduced in
Section 8.4. Here it says that the shorter the length of the wave packet, the greater

2 If this condition does not hold, we must retain higher terms in (k − ko) in the expansion of the
dispersion relation, and the shape of the envelope will change as it propagates.
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is the range of wavenumbers that is necessary to represent it. For a monochromatic
wave �k is zero and so the wave is infinitely long, as we have noted before. We
can also express the bandwidth theorem in terms of frequency and time. A wave
packet that is �x long and travels at velocity vg = dω/dk takes time �t to pass a
fixed point where

�t = �x

dω/dk
. (8.48)

Hence we can write

�t�ω = �x�k, (8.49)

and so

�t�ω ≈ 2π. (8.50)

This is the relationship given in Section 8.4. The bandwidth theorem expresses the
fact that a wave packet (or pulse) of duration �t is the superposition of frequency
components over the range �ω and the shorter the duration of the wave packet,
the wider the range of frequencies required to represent it, cf. Figure 8.5. These
concepts are closely related to the Heisenberg Uncertainty Principle in quantum
wave mechanics where particles are described in terms of waves. The position of
a particle in the one-dimensional case is defined as ‘somewhere’ within a wave
group of length �x. The wavelength λ of a particle is related to its momentum p

by de Broglie’s relationship

λ = h

p
, (8.51)

where h is Planck’s constant. From Equation (8.47) and using λ = 2π/k, it readily
follows that

�x�p ≈ h. (8.52)

This is an expression of the Uncertainty Principle. It says that the wave nature of
a particle makes it impossible to know, at the same time, both its position and
momentum beyond the condition imposed by Equation (8.52).

PROBLEMS 8

8.1 Two laser beams that have nearly the same wavelength can produce a beat frequency
if they are incident on a photodetector with a sufficiently fast response time. One
laser has a wavelength of 766.49110 nm while a second laser has a slightly shorter
wavelength. They produce a beat frequency of 462 MHz. What is the wavelength of
the second laser?

8.2 The A and E strings of a violin are tuned to frequencies of 440 Hz and 660 Hz,
respectively. A musician finds that the E string on her violin is sharp. By playing the
A and E strings simultaneously she hears a beat frequency of 4 Hz. (a) Why do the
beats arise? (b) What is the actual frequency of the E string?
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8.3 The velocity of a wave pulse on a taut string can be determined by measuring the
time it takes the pulse to travel the distance between the two fixed ends. Alternatively,
the velocity of a wave on the string can be determined from a measurement of the
frequency of the fundamental mode of the vibrating string. Does each of these methods
determine phase velocity or group velocity?

8.4 (a) Find the relationship between the group velocity vg and the phase velocity v for
(i) a medium for which v is inversely proportional to wavelength λ and (ii) a medium
for which v is proportional to (λ)−1/2. (b) The dispersion relation for electromagnetic
waves in vacuum is ω = ck, where c is the velocity of light. Determine the phase
and group velocities of such waves, showing that they are equal. (c) The relative
permittivity εr of an ionised gas is given by

εr = c2

v2
= 1 − ω2

o

ω2
,

where ωo is the plasma oscillation frequency. Show that this leads to the dispersion
relation

ω2 = ω2
o + c2k2.

8.5 (a) Calculate (i) the phase velocity and (ii) the group velocity for deep ocean waves
at a wavelength of 100 m. (b) Determine the minimum value of the phase velocity of
water waves on deep water. (The density and surface tension of water are 1.0 × 103

kg m−3 and 7.2 × 10−2 N m−1, respectively; assume g = 9.81 m s−2.)

8.6 A rectangular dish containing mercury is connected to the cone of a loudspeaker so that
when the loudspeaker is driven by an oscillating voltage a standing wave is set up on
the surface of the mercury. When a beam of light is shone on the surface, the standing
wave acts like a diffraction grating and the observed diffraction pattern enables the
spacings of the antinodes of the standing wave to be determined. It is found that the
spacing of the antinodes for a standing wave of frequency 1.35 kHz is 0.25 mm. (a)
Use these data to obtain a value for the surface tension S of mercury. Assume the
dispersion relation

ω2 = gk + Sk3

ρ
,

where ρ is the density and assume also that the wavelength is sufficiently small that
the wave properties are determined by surface tension and not by gravity. (b) What is
the value of the group velocity?
(The density of mercury = 13.6 × 103 kg m−3; assume g = 9.81 m s−2.)

8.7 Cauchy’s formula is an empirical relationship that relates the refractive index n of a
transparent medium to wavelength λ, where λ is the wavelength of the light in vacuum.
The formula is n = A + B/λ2, where A and B are constants for the particular medium.
(a) Show that the ratio of group and phase velocities at wavelength λ is given by

vg

v
= (A − B/λ2)

(A + B/λ2)
.

(b) Evaluate this ratio at a wavelength of 600 nm for a particular type of glass for
which A = 1.45 and B = 3.6 × 10−14 m2.



Problems 8 203

8.8 When a transverse wave travels down a real wire there are forces acting on each
portion of the wire in addition to the force resulting from the tension in the wire. An
equation that gives an improved description of a wave on a real wire is

∂2y

∂t2
= T

µ

(
∂2y

∂x2

)
− αy,

where T is the tension, µ is the mass per unit length and α is a constant. (a) Show
that y = A cos(ωt − kx) is a solution to this equation subject to the condition

ω2 = T

µ
k2 + α.

(b) What is the lowest angular frequency that the wire can support according to this
condition? (c) Obtain the relationship between the group and phase velocities for waves
on the wire.

8.9 An amplifier is used to increase the amplitude of a voltage pulse that has a tempo-
ral width of 5 × 10−8 s. Estimate the required frequency bandwidth (in Hz) of the
amplifier.

8.10 A free electron laser is a device that can produce a very short pulse of light. If the
width of the light pulse is 100 fs (= 100 × 10−15 s) and the central wavelength of the
pulse is 500 nm, estimate the spread of wavelengths in the light pulse.

8.11 A group of n monochromatic waves of equal amplitude a have wavenumbers that
span the range �k in steps δk. The superposition of these waves is given by Equations
(8.36) and (8.37):

ψ = A(x, t) cos(kox − ωot), where A(x, t) = a
sin[n(xδk − tδω)/2]

sin[(xδk − tδω)/2]
.

(a) Obtain an expression for A(x, t) for the case where n = 2. (b) Consider the situation
where n becomes very large but the product (n − 1)δk = �k remains constant. Show
that for this case, we can write

A(x, t) = na
sin[�k(x − αt)/2]

�k(x − αt)/2
,

where α = δω/δk. Compare the expressions from (a) and (b) with Equations (8.15b)
and (8.44), respectively.





Appendix: Solutions
to Problems

SOLUTIONS 1

1.1 (a) (i) 4.0 s, (ii) π/2 rad s−1, (iii) 1.23 N m−1.
1.2 (a) 1.38 m s−1, (b) 3.82 × 103 m s−2.
1.3 amax < g, giving νmax = 1.1 Hz.
1.4 (a) Potential energy is 25% of total energy and hence kinetic energy is 75%

of total energy. (b) (i) Total energy is quadrupled, (ii) maximum velocity is
doubled and (iii) maximum acceleration is doubled.

1.5 (a) 0.41 J. (b) x = 0.045 cos(23t + 2.7)m.
1.6 For the system of two springs connected in parallel, the force on the mass

is the sum of the forces due to the separate springs, giving ωa = √
2k/m =√

2ωb. For the system of two springs connected in parallel the tension in both
springs must be the same, giving ωc = √

k/2m = ωb/
√

2.
1.7 .(a) When the test tube is displaced a distance x into the liquid, the restoring

force due to buoyancy is −Aρgx. Hence, equation of motion is

m
d2x

dt2
= −Aρgx.

This is SHM with frequency ω = √
Aρg/m.

(b) F = −Aρgx, giving U = ∫ x

0 Aρgx ′dx ′ = 1

2
Aρgx2.

Hence, E = 1

2
mv2 + 1

2
Aρgx2, where v is the velocity of the test tube.

1.8 We denote the fundamental quantities mass, length and time by M, L and T,
respectively. Since the dimensions of g are L T−2 we have,

T ≡ MαLβ [LT−2]γ .

Vibrations and Waves George C. King
 2009 John Wiley & Sons, Ltd
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The dimensions of both sides of this equation must be the same and equating
indices of M, L and T we obtain

α = 0, β + γ = 0, −2γ = 1,

giving, T ∝ √
l/g.

1.9 Starting from Equation (1.36), obtain: (a) 1.81 × 10−2 m s−1, (b) 0.43 s.
1.10 Couple acting on rod = −kL sin θ × L cos θ = −kL2θ for small θ . Hence,

I
d2θ

dt2
= −kL2θ .

1.11 .(a) F = −dU

dx
= −6a

x7
+ 12b

x13
.

At equilibrium, F = 0, giving xo = (2b/a)1/6.
(b) For displacement �x from equilibrium, Taylor’s theorem gives

F(xo + �x) = F(xo) + �x

(
dF

dx

)
x=xo

+ · · · ·

F(xo) = 0, and

(
dF

dx

)
x=xo

= 42a

x8
o

− 156b

x14
o

.

Hence, neglecting higher terms,

F(xo + �x) = −36a(a/2b)4/3�x.

This gives SHM with frequency
√

k/m where m is reduced mass and
k = −36a(a/2b)4/3.

1.12 .(a) Consider an elemental length dl of spring at a distance l from the support.
Mass of element = mdl/lo where lo is the equilibrium length of the spring.
Velocity of element = vl/ lo.

Hence kinetic energy of spring = 1

2

mv2

l3
o

∫ l0

0
l2dl = 1

6
mv2.

Kinetic energy of mass M = 1/2Mv2 and potential energy of extended
spring = 1/2kx2. Hence the total energy of the system (i.e. of spring plus
mass M) is

E = 1

2
(M + m/3)v2 + 1

2
kx2.

(b) Since the total energy E of the system is conserved,
dE

dt
= 0, from

which it follows that (M + m/3)
dv

dt
= −kx. This is SHM with ω =√

k/(M + m/3).

1.13 .(a) From conservation of energy,

1

2
mv2 + U(x) = constant = U(A) and hence,

v = √
2[U(A) − U(x)]/m.
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(b) From v = dx/dt, dt = dx/v and hence

period T =
∫

period

dt = 2
∫ A

−A

dx

v
= 4

∫ A

0

dx

v
for symmetric potential

= 4

√
m

2U(A)

∫ A

0

dx√
(1 − U(x)/U(A))

.

(c) For U(x) = αxn and letting ξ = x/A, obtain

T = 4

√
m

2αAn

∫ 1

0

Adξ√
[1 − ξn]

= 1

A(n/2)−1
× (factor independent of A).

Hence, for n = 2 : T is independent of amplitude A,
for n = 4 : T ∝ 1/A, etc.

SOLUTIONS 2

2.1 We require the condition of critical damping for which b/2m = ωo = √
k/m.

This gives b = 2m
√

g/spring extension.
Hence b = 64 kg s−1.

2.2 Using Equation (2.9) and γ = b/m, obtain
b = (2m/T )ln(1/0.90) = 0.042 kg s−1, taking T = 2.5 s.
Hence, damping force = −0.042v N, where v is the velocity.
γ = 0.084 s−1.

2.3 Using A(t) = A0 exp(−γ t/2) and Q = ωo/γ , obtain Q = ωot

2ln[A0/A(t)]
.

Inspection of graph shows 20 complete cycles of oscillation take 600 s and
amplitude falls by a factor of approximately 2.8 during this time. Using ωo =
2π/T and with t = 20T ,

Q = 2π × 20T

2T ln(2.8)
≈ 60.

2.4 Using Equation (2.18):

E(t = 10T ) = Eo exp(−10γ T ) = Eo/2, giving exp(−10γ T ) = 1/2.

E(t = 50T ) = Eo exp(−50γ T ) = Eo exp(−10γ T )5 = Eo(1/2)5.

Hence, energy after 50 cycles is reduced by a factor of 32.
2.5 .(a) Q-values: 314, 10.5 and 3.14, respectively.

ω-values: 3.142, 3.138 and 3.102, respectively, which do not change appre-
ciably.
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(c) Using

x = A exp(−γ t/2) + Bt exp(−γ t/2)

and

dx

dt
= exp(−γ t/2)[B − γBt/2 − γA/2]

with initial conditions at t = 0 : x = 10 and dx/dt = 0, obtain

x = 10 exp(−πt)(1 + πt), since γ = 2ωo = 2π.

2.6 Use Equations (2.6) and (2.21) to obtain ω = ωo(1 − 1/4Q2)1/2 and the
approximation (1 − α)1/2 � 1 − α/2 for α 	 1.

2.7 For pendulums we have

m
d2x

dt2
+ b

dx

dt
+ mg

l
= 0, where b is a constant.

Since A(t) = A0exp( − b/2m)t ,

ln[A(t)/A0]brass

ln[A(t)/A0]alum.

= ρalum.

ρbrass
, where ρ is the density.

Hence, ln[A(t)/A0]brass = ln(0.5)
2.7

8.5
, and the amplitude of the brass pendulum

is reduced by a factor of 0.80.

2.8 .(a) Energy loss per cycle = Ke2A2ω4

c3

∫ T

0
sin2 ωtdt .

(b) Use
energy loss per cycle

stored energy
= 2π

Q
.

(c) τ ≡ 1/γ = Q/ω = mcλ2/Ke24π2. For λ = 500 nm, τ ≈ 1 × 10−8 s.

SOLUTIONS 3

3.1 Use Equations (3.18) and (3.12).
(a) 0.013 m, 0.58◦, (b) 0.13 m, 90◦, (c) 5.2 × 10−4 m, 179◦.

3.2 Follow the hints to obtain

A = a

(1 + 1/u4 − 2/u2 + 1/u2Q2)1/2
.

For A to be a maximum, the denominator must be a minimum.

3.3 .(a)
ωo − ωmax

ωo
= 1 −

(
1 − 1

2Q2

)1/2

� 1

4Q2
for 2Q2 	 1. Answer: 0.25%.

(b) Similarly,
Amax − A(ωo)

A(ωo)
� 1

8Q2
for 4Q2 	 1. Answer: 0.125%.
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3.4 Close to the resonance frequency and for the given parameters,

P (ω) = 50

[(ω − 100)2/4] + 1
W.

3.5 .(a) 398 Hz.
(b) At resonance frequency, impedance of circuit = R giving I0 = 0.2 A.

3.6 eiπ/2 = i and hence ii = e−π/2 = 0.208.
3.7 dz/dt = iωz, where the factor i implies a phase difference of π/2 between

z and dz/dt and indeed between x and dx/dt . The sign of the phase shift
shows that dx/dt is in advance of x.

3.8 .(a) When the pendulum mass is at a distance x from its equilibrium position
and the point of suspension is at a distance ξ from its equilibrium position,
the restoring force on the mass is

−mg sin[(x − ξ)/ l] = −mg(x − a cos ωt)/ l.

Using the small-angle approximation, this leads to the equation of motion:

m
d2x

dt2
+ b

dx

dt
+ mω2

ox = mω2
oa cos ωt

which is the real part of the complex equation

m
d2z

dt2
+ b

dz

dt
+ mω2

oz = mω2
oaeiωt .

3.9 .(a) Using A(t) = A0e−γ t/2 and Q = ωo/γ obtain Q = nπ

ln[A0/A(t)]
where

n is the number of complete cycles in time t .
Hence Q = 75π.

(b) Resonance amplitude � Qa = 0.12 m.
(c) Starting with:

A(ω) = a
ω2

o

[(ω2
o − ω2)2 + ω2γ 2]1/2

,

half height points will occur at frequencies where

[(ω2
o − ω2)2 + ω2γ 2]1/2 = 2[ω2

oγ
2]1/2.

Hence,

[(ωo − ω)(ωo + ω)]2 + ω2γ 2 = 4ω2
oγ

2.

Letting ωo − ω = �ω and making the approximation that ω = ωo near
to the resonance frequency, obtain �ω = γ

√
3/2 and hence resonance

width = 2γ = γ
√

3 =
√

3

Q

√
g

l
which is equal to 0.019 rad s−1.
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3.10 .(a) (iii)

E = 1

2
mA2ω2 sin2(ωt − δ) + 1

2
kA2 cos2(ωt − δ)

= 1

2
mA2[ω2 sin2(ωt − δ) + ω2

o cos2(ωt − δ)].

(b) Differentiate E with respect to t and equate the result to zero to obtain

ω = ωo when E = 1

2
mA2ω2

o where A is the amplitude at resonance.

(c)
K

E
= 1

1 + (ωo/ω)2
.

(d) E = K + U = 1

4
mA2(ω2

o + ω2).

Then, substitute for A = F0/m

[(ω2
o − ω2)2 + ω2b2/m2]1/2

, cf. Equation

(3.18).

3.11 .(a) Energy loss/cycle = bv2
o

∫ T

0
sin2(ωt − δ)dt = bv2

oT

2
= πbA2ω.

(b) Recall that energy of a simple harmonic oscillator = 1

2
mω2A2.

(c) Take ω = ωo at resonance.

3.12 Total energy dissipated = Mgh, where M is mass of winding weight and
h is the distance it falls in 8 days. Total number of cycles = T ′/T where
T ′ = 8 days and T = 2π

√
l/g is the period of the pendulum. Stored energy =

1

2
mgA2/l.

Using
energy dissipated/cycle

stored energy
= 2π

Q
, obtain Q = πmA2T ′

MlhT
� 70.

SOLUTIONS 4

4.1 .(a) ω1 = 5.72 rad s−1 and ω2 = 5.99 rad s−1.

(b) Using xa = A cos
(ω2 − ω1)t

2
cos

(ω2 + ω1)t

2
, we have a high frequency

oscillation whose amplitude is modulated at the lower frequency
(ω2 − ω1)/2. Amplitude becomes zero after one quarter of the lower

frequency, cf. Figure 4.8, = 1

4

2π

(ω2 − ω1)/2
= 11.6 s.

4.2 .(a) At time t = 0, xa = 1/2(C1 + C2), xb = 1/2(C1 − C2). Hence, C1 = 10
mm, C2 = 0 mm.

(b) C1 = 0 mm, C2 = 10 mm, (ii) C1 = 10 mm, C2 = 10 mm, (iii) C1 = 15
mm, C2 = 5 mm.

4.3 q1 = (xa + xb) with ω1 = √
k/m, q2 = (xb − xa) with ω2 = √

3k/m.
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4.4 Energy of a simple harmonic oscillator = (1/2)mω2(amplitude)2. In
this case ω = (ω2 + ω1)/2 and amplitude = A cos [(ω2 − ω1)t]/2 or
A sin[(ω2 − ω1)t]/2. Frequency of exchange of energy = (ω2 − ω1).

4.5 .(a) Tensions in upper and lower strings are 2mg and mg , respectively, and
are assumed to be constant during oscillations.
Take sin θ1 = x1/l and sin θ2 = (x2 − x1)/ l.

Then, m
d2x1

dt2
= −2mg

l
x1 + mg

l
(x2 − x1), etc.

(b) B/A = 1 ± √
2 for ω =

√
(2 ± √

2)g/l, respectively.

(c) 1.1 s, 2.6 s and 2.0 s, respectively.

4.6 .(a) The centre of mass of the system remains stationary during the vibrations.
In the symmetric-stretch mode the central mass also remains stationary.
The other two masses vibrate against the central mass (moving in opposite
directions) at the same frequency which is that of a mass m on a spring
of spring constant k, i.e.

√
k/m.

(b) The tensions in the left-hand and right-hand springs are T1 = k(x2 − x1)

and T2 = k(x3 − x2), respectively. This leads to the stated equations of
motion.

(c) Assuming solutions of the form of normal coordinates, i.e. x1 =
A cos ωt, x2 = B cos ωt and x3 = C cos ωt , the equations of motion lead
to A(ω2

1 − ω2) = C(ω2
1 − ω2).

The solutions for ω of this equation give the normal frequencies:

(i) ω = ω1 = √
k/m, the first normal mode frequency;

(ii) A = C gives the second normal mode frequency

ω2 = √
k(2m + M)/Mn.

(d) Ratio
ω2

ω1
=

√
2m

M
+ 1 = 1.91 which compares with the value of 7/4 =

1.75 from the text.

4.7 .(a) Letting the downward displacements of the upper and lower masses be
x1 and x2, respectively, the tensions in the upper and lower springs are
4kx1 and k(x2 − x1), respectively. This leads to the following equations
of motion:

3m
d2x1

dt2
+ 5kx1 − kx2 = 0; m

d2x2

dt2
− kx1 + kx2 = 0.

Assuming solutions of the form, x1 = Aeiωt , x2 = Beiωt and solving
resulting equations for ω gives normal frequencies

√
2k/m and

√
2k/3m.

(b) For ω = √
2k/m, B = −A. This means that at any instance, the masses

are equidistant from their equilibrium positions and are on opposite sides
of them. For ω = √

2k/3m, B = 3A. At any instance, the masses are both
either above or below their equilibrium positions, the displacement of the
lower mass being three times that of the higher mass.
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4.8 There are five normal modes, as illustrated.

4.9 .(a) For downward displacements x1 of mass M and x2 of mass m, tensions in
the top and bottom springs are k1x1 and k2(x2 − x1), respectively, leading
to the stated equations of motion.

(c) Substituting ω = √
k1/M in equation for B gives the desired result. ω =√

k1/M is, of course, the resonance frequency of a mass M connected to
a spring of spring constant k1.

4.10 .(a) From left to right, the tensions in the springs are T1 = kx1, T2 =
k(x2 − x1), T3 = k(x3 − x2), etc.
This leads to equations of motion,

m
d2x1

dt2
= −2kx1 + kx2, etc.

Use of usual substitutions, e.g., x1 = A cos ωt, x2 = B cos ωt and x3 =
C cos ωt , leads to:


(2ω2

o − ω2), −ω2
o, 0

−ω2
o, (2ω2

o − ω2), −ω2
o

0, −ω2
o, (2ω2

o − ω2)







A

B

C


 = 0

where ωo = √
k/m. For non-zero solutions we require the determinant

to vanish, giving (2ω2
o − ω2)(ω4 − 4ω2

oω
2 + 2ω2

o) = 0. Solving this

equation for ω gives the normal frequencies
√

2k/m and
√

(2 ± √
2)k/m.
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(b) For ω = √
2k/m, A = −C, B = 0.

For ω =
√

(2 + √
2)k/m, A = C, B = −√

2A.

For ω =
√

(2 − √
2)k/m, A = C, B = √

2A.

SOLUTIONS 5

5.1 Amplitude = 15 mm, wavelength = 8π mm, frequency = 11.9 Hz and
velocity = 300 mm s−1. The wave travels in the negative x-direction.

5.2 Amplitude A = 0.15 m, ω = 20π rad s−1, λ = 5.0 m, and k = 2π/5. Cosine
solution is the appropriate one, since displacement = A at x = 0,
t = 0. Wave travels in the positive x-direction. Hence equation is y =
0.15 cos(0.4πx − 20πt) m.

5.3 .(a) (iii) Make use of T = λ/v. (iv) Make use of k = 2π/λ, ω = 2πν and
λν = v.

(b) v = ω

(k2
1 + k2

2 + k2
3)

1/2
.

5.4 Make use of trignometric relations

cos(α − β) = cos α cos β + sin α sin β

sin(α − β) = sin α cos β − cos α sin β.

(a) A cos(ωt − kx) = A cos(kx − ωt), i.e. no difference between the waves
they describe.

(b) A sin(ωt − kx) = −A sin(kx − ωt) = A sin(ωt − kx ± π), i.e. a phase
difference of ±π between the waves.

5.5

y(x + δx, t + δt) = A exp

{
− [x + δx − v(t + δt)]2

a2

}

= A exp

{
− [x − vt]2

a2

}
, since vδt = δx.

5.6 (a) (i) 2.0 × 105 Hz, (ii) 6.0 × 1014 Hz, (iii) 3.0 × 1018 Hz, (iv) 1.0 × 108

Hz, (v) 68 kHz. (b) 17 m and 2.3 cm, respectively. λ440 = 0.77 m, a typical
size of a musical instrument.

5.7 .(a) We denote the fundamental quantities mass, length and time by M, L and
T, respectively. Since the dimensions of v are LT−1 we have,

[LT−1] ≡ MαLβ[MLT−2]γ .
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Equating indices of M, L and T we obtain

α + γ = 0, β + γ = 1, γ = 1/2, giving v ∝
√

T L/M.

(b) The string with the largest wave velocity will be the thinnest string.

5.8 .(a) (i) Using Equation (5.32) find wave velocity = 50 m s−1.
(ii) Describing the wave as for example, y = A sin(ωt − kx), the maxi-

mum value of ∂y/∂t = ωA = 2πνA = 2.4 m s−1.

(b) Wave velocity v =
√

S

σ
=

√
2.5/0.75

0.125/0.752
= 3.9 m s−1.

5.9 .(a) At position y, tension T (y) in rope = yMg/L, giving velocity v(y) =√
yMg/Lµ, where µ = M/L. Hence v(y) = √

gy.
(b) The time it takes the wave to travel a distance δy at y is

δt = δy

v(y)
= δy√

gy
.

Hence time taken to travel from the bottom to the top of the rope is

∫ L

0

dy√
gy

= 2

√
L

g
,

and time for the return trip = 4

√
L

g
which is 2.0 s.

5.10 .(a) Using Equations (5.44) and (5.32),

P = 1

2
µω2A2

√
T /µ which gives P = 60 W.

(b) (i) If frequency is doubled, power must increase by a factor of 4 to
240 W.
(ii) If amplitude is halved, power decreases by a factor of 4 to 15 W.

5.11 .(a) I2 = I1(r1/r2)
2, since intensity ∝ 1/r2.

(b) 5.0 m.

5.12 Total surface area of sphere of radius 1.5 × 1011 m = 4π(1.5 × 1011)2 m2.

Hence, solar power per square metre on Earth ≈ 4 × 1026

4π(1.5 × 1011)2
≈ 1.4 kW.

Solar power per square metre on Jupiter ≈ 1.4/52 kW ≈ 56 W.

5.13 .(a) From Equations (5.32) and (5.6) obtain λ2/λ1 = √
µ1/µ2, giving λ2 =

12.5 cm.
Using Equation (5.54), find A2 = 2.0 cm.

(b) Using Equation (5.55), find B1/A1 = −1/3, and hence the fraction of
power reflected at the boundary = 1/9.
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5.14 .(a) Using Equation (5.52) and the relationship k ∝ n, obtain ratio of reflected

to incident amplitudes = B1

A1
= n1 − n2

n1 + n2
.

Hence, the fraction of intensity reflected =
(

n1 − n2

n1 + n2

)2

= 0.04.

(b) Require a thickness of λ/4, where λ is the wavelength of the light in the

MgF2 coating. λMgF2
= λair

nair

nMgF2

= 550
1.0

1.39
= 396 nm.

Hence, required thickness = 99 nm.
(c) For maximum reflection the wave reflected at the glass surface should

reinforce the wave reflected at the MgF2 surface which occurs when the
thickness of the MgF2 coating is λMgF2

/2 = 198 nm.

5.15 .(a) Equation of motion of central mass, is

m
∂2yr

∂t2
= −T sin θ1 − T sin θ2 � −T

(yr − yr−1)

a
− T

(yr − yr+1)

a
.

Hence,
∂2yr

∂t2
= T

m

[
(yr+1 − yr)

a
− (yr − yr−1)

a

]
.

(b)
∂2y

∂t2
= T

m

[
y(x + δx) − y(x)

δx
− y(x) − y(x − δx)

δx

]
.

Applying Taylor expansions to the right-hand side of the equation gives,

∂2y

∂t2
= T

m




δx
∂y

∂x
+ 1

2
(δx)2 ∂2y

∂x2

δx
−

δx
∂y

∂x
− 1

2
(δx)2 ∂2y

∂x2

δx


 = T

m
δx

∂2y

∂x2

Hence
∂2y

∂t2
= T

µ

∂2y

∂x2
, where µ = m/δx.

(Note: As δx → 0, δm → 0 so that µ remains finite.)

SOLUTIONS 6

6.1 .(a) v = 44.3 m s−1, λ = 1.0 m and ν = 44.3 Hz.

(b) Maximum value of

(
∂y

∂t

)
= Aω = 8.35 m s−1.

Maximum value of

(
∂2y

∂t2

)
= Aω2 = 2.32 × 103 m s−2.

6.2 .(a) λ = 0.27 m.
(b) L = λ/2 = 0.135 m.
(c) Same frequency, 262 Hz, but λair = 1.3 m, since velocities in wire and

air are different.

6.3 .(a) (n + 1)λn+1 = nλn = 2L.
Hence, n = 4, n + 1 = 5, L = 1.1 m.
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(b) Separation of cold spots = λ/2, giving ν = 3 × 1010 Hz for c =
3 × 108 m s−1.

6.4 Make use of cos(α + β) + cos(α − β) = 2 cos α cos β.
Minimum amplitude = (1 − R)A at node of 2RA cos ωt cos kx.
Maximum amplitude = (1 − R)A + 2AR at antinode of 2RA cos ωt cos kx.

6.5 .(a) ν2 = 880 Hz, ν3 = 1320 Hz; velocity remains the same.
(b) Number of harmonics n × 440 < 15 000, giving n = 34.
(c) From Equations (5.6) and (6.12) obtain, L2 = L1ν1/ν2 = 26.9 cm and so

string should be fingered at 5.1 cm from the end of the string.

6.6 .(a) One octave corresponds to a factor of 2 increase in frequency and n

octaves correspond to a factor of 2n. For frequency range ν1 to ν2,
ν2/ν1 = 2n.

Hence, n ≤ 1

log 2
log

(
ν2

ν1

)
, giving n = 9 complete octaves for ν1 =

20 Hz and ν2 = 15 kHz.
(b) ν1 = 2 × 105 Hz, ν2 = E/h = 2.4 × 1020 Hz, giving 50 octaves between

them.

6.7 From Equations (5.6) and (6.12) we have ν = 1

2L

√
T

µ
.

δν

δT
� dν

dT
= ν

2T
, giving

δν

ν
= 1

2

δT

T
.

6.8 .(a) From ν = 1

2L

√
T

µ
and µ = πρ(d/2)2, where ρ is density of material,

obtain d2 = d1ν1/ν2, giving d2 = 1.2 mm.
(b) Using Equation (6.18) obtain total force on neck ≈ 600 N for six strings.
(c) From above, d2 = d1

√
ρ1/ρ2, giving a diameter of 0.73 mm for nylon

string.

6.9 .(a)
M

3

d2y1

dt2
= −T sin θ1 + T sin θ2 = −T

y1

L/4
+ T

(y2 − y1)

L/4
, etc.

Assuming y1 = A cos ωt , y2 = B cos ωt and y3 = C cos ωt , obtain

A(ω2 − 2α) + Bα = 0,

Aα + (ω2 − 2α)B + Cα = 0,

Bα + C(ω2 − 2α) = 0,

where α = 12T /LM . Hence,


 (ω2 − 2α), α, 0

α, (ω2 − 2α), α

0, α, (ω2 − 2α)





 A

B

C


 = 0

For non-zero solutions we require the determinant to vanish, giving

(ω2 − 2α)(ω4 − 4αω2 + 2α2) = 0.
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Hence, ω2
1,3 = 4α ±

√
8α2

2
= (2 ±

√
2)α, ω2 = 2α.

This gives the frequencies,

ν1 = 0.42
√

T /LM, ν2 = 0.78
√

T /LM and ν3 = 1.02
√

T /LM.

(b) For a string we obtain from Equations (5.6) and (6.12), νn = n

2

√
T

LM
,

giving ν1 = 0.5
√

T /LM , ν2 = √
T /LM and ν3 = 1.5

√
T /LM , which

can be compared with the normal frequencies of the three-mass system.

6.10 .(a) �ν = c/2L = 1.5 × 108 Hz.
Therefore number of modes = 4.5 × 109/1.5 × 108 = 30.

(b) L = 3.3 cm for just one mode to exist.

6.11 Modes that will not be excited are those with a node at one-third the length
of the string, e.g. n = 3, 6 and 9.

6.12 From Equation (6.37) we have

An = 2

L

∫ L

0
dx αx sin

(nπ

L
x
)
, n = 1, 2, . . . .

Using standard integral
∫

dx x sin ax = 1

a2
sin ax − x

a
cos ax, find

An = 2α

L

[(
L

nπ

)2

sin
(nπx

L

)
−

(
xL

nπ

)
cos

(nπx

L

)]L

0

= − 2α

Lnπ
cos nπ.

Hence, A1 = 2αL/π, A2 = −2αL/2π and A3 = 2αL/3π, giving

f (x) = 2αL

π

[
sin

(nπ

L

)
− 1

2
sin

(
2nπ

L

)
+ 1

3
sin

(
3nπ

L

)
− · · ·

]
.

6.13 .(a) If string is displaced a distance x, the force acting at the mid point is

−2T sin θ � −4T x/L.

Work done in moving the mid point a further distance dx is 4T xdx/L.

Hence total work done for displacement d is
4T

L

∫ d

0
xdx = 2T

L
d2.

(b) Using Equations (6.27), (6.8) and (5.32) obtain En = 1

4

n2π2T A2
n

L
.

The lowest three excited modes are n = 1, 3 and 5 with amplitudes of
8d/π2, −8d/(3π2) and 8d/(5π2), respectively. Hence, the sum of the
energies of these three modes is

T (8d)2

4Lπ2

(
1 + 1

32
+ 1

52
+ . . .

)
= 1.87

T d2

L
.

Hence, the fraction of the total energy = 1.87/2 = 93.5%.
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6.14 The function is often described as a square wave function. The more terms
that are included in the series, the better the approximation to a square
wave.

6.15 .(a) Using de Broglie, λn = 2L/n = h/pn = h/
√

2mEn, giving En = n2h2

8mL2
.

(b) Putting n = 1, En = 1.5 × 10−18 J ≈ 10 eV.

SOLUTIONS 7

7.1 .(a) Since 10 bright fringes span 1.8 cm, fringe separation = 0.20 cm and
hence using Equation (7.15), λ = 600 nm.

(b) (i) Using Equation (7.13), the distance between the two nth bright fringes
= 2nλL/a which is equal to 7.6 mm for n = 2. (ii) Similarly, the distance
between the two n = 2 dark fringes is 9.5 mm.

7.2 Angular separation of fringes θ = λ/a.
Wavelength of light in medium with refractive index n is given by

λmedium = λair

n
.

Hence,
θmedium

θair
= λmedium

λair
= 1

n
, giving θmedium = 0.03◦.

7.3 Before the film is inserted, the n = 15 bright fringe occurs at distance d =
15λL/a from the central (n = 0) bright fringe. After the film is inserted, the
optical path of wavelets from the covered slit is increased by an amount
equal to (n − 1)t , where n is the refractive index of the film and t is its
thickness. At the new position of the central fringe, the amount (n − 1)t

must be compensated by the distance a sin θ � ad/L, cf. Figure 7.4. Hence

t = ad

(n − 1)L
with the value 1.25 × 10−5 m.

7.4 .(a) Angular divergence of sunlight on Earth ≈ angle subtended by Sun at the
Earth ≈ 1.4 × 106/1.5 × 108 ≈ 1 × 10−2 rad.

(b) From Equation (7.20), divergence of light from source 	 2λ/a 	 1.5 ×
10−3 rad. This value is much smaller than the divergence of sunlight.

7.5 First minimum of diffraction pattern from slit of width d occurs at angle θ

given by sin θ = λ/d. The nth bright fringe from the two-slit interference
pattern occurs at angle θ given by sin θ = nλ/a, where a is slit separation.

Hence,
λ

d
= 15λ

a
, which gives a = 0.90 mm.

7.6 Constructive interference occurs when path difference = nλ, cf. Equation
(7.1). For this problem, use of Equation (7.10) leads to constructive inter-
ference when sin θ = nλ/a, where a is the separation of the loudspeakers, cf.
Figure 7.4. The full circle corresponds to the angle θ going from 0 to 360◦.
In the first quadrant θ = 0◦ to 90◦. Since sin θ ≤ 1, nλ/a ≤ 1 giving n = 0,
1, 2, 3 or 4 since a/λ = 4, with λ = 0.34 m and a = 1.36 m. It follows that
there will be a total of 16 maxima around the complete circle.
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7.7 .(a) Distance between successive maxima = λ/2 = (1.0 × 10−3/4000) m,
giving λ = 500 nm.

(b) For given conditions, m
λ1

2
= (m + 1)

λ2

2
= x, where x is movement of

mirror and m takes integer values. This leads to x = λ1λ2

2(λ1 − λ2)
, which

has the value of 0.29 mm for given values of λ1 and λ2.
7.8 The gas, of refractive index n, in the gas cell increases the optical path

length in one arm of the interferometer by an amount equivalent to a mirror
movement of t (n − 1), where t is the length of the gas cell.

∴ t (n + 1) = m
λ

2
, where m = 90.

This gives n = 1.00036 for given values of t and λ.
7.9 Sound waves are reflected off successive steps of the amphitheatre and they

interfere constructively when nλ = 2L, where L is the length of the step
and n = 1, 2, 3, . . . . This is the same expression as for standing waves on a
stretched string.

νn = nv

2L
= 340 Hz, 680 Hz, 1020 Hz, etc., for a value of L = 0.5 m.

7.10 .(a) From Equation (7.35) find L ≈ 4 km for typical values of the parameters
involved. There would be no interference effects since the light sources
are independent and not coherent with each other.

(b) 2.8 × 10−7 rad or 1.6 × 10−5 ◦
.

7.11 plane of film
point
object

d

L l

blurred
image

(a) A point source should produce a point image. However, if the pin hole
has a finite diameter d, rays of light from the source will produce a
blurred image of finite extent as illustrated by the figure. When L � l,
the diameter of this blurred image ≈ d and the larger the value of d

the greater the amount of blurring. However, the pin hole will produce
a diffraction pattern at the film plane whose width ∝ 1/d, cf. Equation
(7.35), i.e. the smaller the value of d the greater the amount of blurring
due to diffraction at the pin hole.

(b) For the total amount of blurring to be minimised, the two effects should
each produce about the same amount of blurring. This means: diameter
of pin hole ≈ width of diffraction pattern.

This gives d ≈ 2.44λl

d
and hence, d ≈ √

2.44λl.

(c) d ≈ 0.45 mm.
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SOLUTIONS 8

8.1 Beat frequency �ν = ν2 − ν1 = c

(
1

λ2
− 1

λ1

)
= c

(
λ1 − λ2

λ1λ2

)
� c�λ

λ2
1

to a

very good approximation, giving �λ = λ2
1�ν/c.

∴ λ2 = λ1 − �λ = (766.49110 − 0.00090) nm, for given values of λ1

and �ν.
8.2 (a) The second harmonic of the E string has the same frequency (1320 Hz) as

the third harmonic of the A string. If one string is slightly out of tune, beats
are produced. (b) A beat frequency of 4 Hz means the frequency of the sec-
ond harmonic of the (sharp) E string = 1324 Hz and hence, the fundamental
frequency = 662 Hz.

8.3 A wave pulse travels at the group velocity. The frequencies of the modes of
vibration of a taut string depend on the phase velocity, cf. Equation (6.8).

8.4 .(a) (i)
ω

k
= α

λ
= αk

2π
, giving ω = αk2

2π
, where α is a constant.

Hence,
dω

dk
= 2αk

2π
= 2v.

(ii)
ω

k
= α

λ1/2
= αk1/2

(2π)1/2
, giving ω = αk3/2

(2π)1/2
, where α is a constant.

Hence,
dω

dk
= 3

2
v.

(b) For ω = ck,
ω

k
= c and

dω

dk
= c.

(c)
c2

v2
= 1 − ω2

o

ω2
.

∴ ω2c2

v2
= ω2 − ω2

o and substituting for v = ω/k, obtain ω2 = ω2
o + c2k2.

8.5 .(a) At long wavelengths, the wave properties are determined by gravity.

(i) v = ω

k
=

(g

k

)1/2
=

(
gλ

2π

)1/2

with the value of 12.5 m s−1,

(ii) vg = dω

dk
= 1

2

(g

k

)1/2
= 1

2
v = 6.25 m s−1.

(b) Starting with Equation (8.34), obtain v =
(

gλ

2π
+ 2πS

λρ

)1/2

.

Then
dv

dλ
= 1

2v

(
g

2π
− 2πS

λ2ρ

)
, and minimum phase velocity occurs at

λ = 2π

(
S

ρg

)1/2

which equals 1.7 × 10−2 m, for given values. Using

this value of λ, the minimum value of v is 0.23 m s−1.

8.6 .(a) Spacing of antinodes = λ/2 giving λ = 0.5 mm.
Using Equation (5.6), obtain v = 0.675 m s−1.

Since wave properties are determined by surface tension, v =
(

Sk

ρ

)1/2

,

giving S = v2ρλ

2π
= 0.49 N m−1.

(b) In the limit of short wavelength, vg = 3

2
v = 1.0 m s−1.
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8.7 .(a) n = c

v
= A + B

λ2
, giving

c

ω
= A

k
+ Bk

(2π)2
from which we obtain

dω

dk
= ω2

ck2

(
A − B

λ2

)
= v

n

(
A − B

λ2

)
.

∴ vg

v
= (A − B/λ2)

(A + B/λ2)
.

(b) For given values, vg/v = 0.87.

8.8 .(a) y = A cos(ωt − kx).

∂2y

∂t2
= −ω2A cos(ωt − kx); ∂2y

∂x2
= −k2A cos(ωt − kx).

Substitution into
∂2y

∂t2
= T

µ

(
∂2y

∂x2

)
− αy gives ω2 = T

µ
k2 + α.

(b) The lowest angular frequency is when k = 0, giving ω = √
α.

(c) From ω2 = T

µ
k2 + α, find

dω

dk
= T

µ

k

ω
and hence vgv = T /µ.

8.9 From bandwidth theorem, Equation (8.50), obtain

�ν = �ω

2π
≈ 1

�t
≈ 20 MHz.

8.10 From Equation (5.6) obtain,
�λ

�ν
� dλ

dν
= − c

ν2
, leading to �λ �

∣∣∣∣λ2

c
�ν

∣∣∣∣ and

with �ν ≈ 1

�t
from bandwidth theorem, obtain �λ ≈ 8 nm.

8.11 .(a) Taking n = 2 and using the trignometric relation sin 2β = 2 sin β cos β,
obtain, A(x, t) = 2a cos[(xδk − tδω)/2].

(b)

A(x, t) = a
sin[nδk(x − αt)/2]

sin[δk(x − αt)/2]
.

Using the approximation �k = (n − 1)δk � nδk when n is very large:

A(x, t) = a
sin[�k(x − αt)/2]

sin[�k(x − αt)/2n]

= na
sin[�k(x − αt)/2]

�k(x − αt)/2
,

using the small-angle approximation with n very large.
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forced oscillations 49–50
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damped

complex representation 74
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full width at half height 62–63
fundamental mode 140

Gaussian functions 106–109
global warming 96
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pendulums 18

group velocity 189–190, 191, 194
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140–143, 141
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92
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coherence 167–169
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longitudinal oscillations 96

magnetic energy 28
marbles 21–22
matrix representations 90–91
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Millennium Bridge 33
modes of vibration 140

energy 148
modulation 184

amplitude 186–187
modulus (of a complex number) 69
molecular modeling 95

vibrations 15
moment of inertia 23
multiplication, complex numbers 68
mutual inductance 92

natural frequency of oscillation 35
Newton’s second law 4
nodes 137, 138
normal coordinates 83
normal frequencies 83
normal modes

coupled oscillators 78–81
identification 87–88
independence 84
multiple 98–99
superposition 81–84

fundamental 140
independence 157
molecules 95
superposition 78, 149–153
transverse oscillations 97–98
vibrating strings 149–154

energy 156–158
see also harmonics; resonance

numerical methods 24–27

oscillators
coupled see coupled oscillators
damped see damped oscillators
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oscillators (continued )
simple harmonic see simple

harmonic motion

pendulums 1–2
coupled 78

normal modes 78–81
worked example 84–86

ideal 17–18
energy state 19–22

numerical solutions 24–27
computed values 26

physical 22–24
period 110

simple harmonic oscillator 3
phase

coupled oscillators 80–81
interference and 161–162

phase angle
forced harmonic oscillator 53,

54–55, 56
simple harmonic oscillator 7–9

phase velocity 188–189, 190
relativity theory and 193–194

piezoelectric crystals 15
plane waves 129
plasma oscillation frequency 193–194
plucked strings 151–152
polarization 109
position see displacement
potential energy

simple harmonic oscillator 2, 10
hydrogen molecule 16
pendulum 19

standing waves 148
taut strings 117

potential wells 13
power, traveling waves 120
power resonance curve 62–63
pulses

single wave peak 106–109
wave packets 195–201

quality factor
damped harmonic oscillator 33,

43–46, 46
forced oscillators 57

power resonance and 63
quantum mechanics

simple harmonic motion 15–16,
16–17

uncertainty principle 201

radio waves
amplitude modulation 186–187
atmospheric dispersion 193
receivers 66, 66

Rayleigh criterion 178
reflections 121–123

coefficient 123
minimization 124–126
standing waves and 146–147

resonance 49, 50, 53
normal mode 92
see also normal modes; power

resonance curve
restoring force 2

shock absorbers 38
side bands 187
simple harmonic motion 1–2

defining characteristics 2, 3–4,
20–21

electrical circuits and 27–29
energy state 2, 10–12, 20

electrical circuits 28–29
quantization 15

equation of motion 4, 8
complex form 71–73

frequency of oscillation 9
large amplitudes 25–27
mass on a spring

expressions 5–7
horizontal 2–4
solutions 7–9
vertical 5
worked example 9–10

normal modes and 82–83
numerical solution 24–27
pendulums

ideal 17–22
numerical solutions 24–27
physical 22–24

physical examples 14–15, 15
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problems 29–32
small scales 12–17
see also forced oscillations,

undamped
sinusoidal waves 109–112

in two dimensions 128
see also Fourier analysis

small-angle approximation 18
solar energy 106
sound waves, interference

169–170
spherical waves 132–133
spring constant 3, 50
springs

coupling oscillators 87–89
horizontal 2–4
multiple masses 98–99
vertical 5

forced 51–54
stable equilibrium 12–13
standing waves 137

energy 147–149, 156–158
as normal modes 149–158
as superposition of traveling waves

144–147
vibrating strings 137–144

Strait of Gibraltar 172, 173
strings 114–116

energy state 156–158
Fourier analysis 153–154
guitar 14, 45, 142
harmonics (normal modes)

140–143, 141
superposition 150–153

plucking 151–152
standing waves 137–144

superposition
normal modes 78, 149–153
traveling waves to form standing

waves 144–147
waves of similar frequency

184–186
see also Fourier transform;

interference; wave packets
superposition principle 149–150
symmetric stretch 95
synthesis (musical) 153

Taylor’s theorem 13
timbre 153
transient response 49, 66–68
transmission (at a discontinuity) 122,

123
transverse oscillations 96–99

see also strings
traveling waves 105–106

complex notation 112
energy state 116–119

reflection 121–126
transport 119–120

physical characteristics 106
sinusoidal 109–112
two and three dimensions 126–130

circular and spherical symmetry
130–133

vibrating strings 114–116
wave equation 112–114
wave pulses 106–109
wavelength 109

tuning forks 14, 33–34
turning point 7

ultrasonic scanning 126
uncertainty principle 201

velocity
complex representation 73
simple harmonic oscillator 7, 11

pendulum 20
see also dispersion

vibrating strings see strings
voltage oscillations 47

walking 24
water waves 194–195
wave equation

one-dimensional 112–114
three-dimensional, spherical 132
two-dimensional, circular 131

wave packets 195–201
continuous frequency range

199–201
wave pulses (single peak) 106–109
wavefronts 129

Huygen’s principle 162
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wavelength 109
light 171

wavenumber 111
dispersion relation 192–194

waves, traveling see traveling waves

X-ray crystallography 170

Young double-slit experiment
164–170,
179–180
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